Loading…

The inorganic chemistry of wood combustion for power production

Equilibrium calculations were performed to determine the inorganic chemistry involved in the combustion of aspen woodchips with a large excess of oxygen at pressures of 1, 4 and 10 atm. At 1 atm, a potassium-sulfate-rich liquid forms at high temperatures (1050°C) and persists to a temperature of bet...

Full description

Saved in:
Bibliographic Details
Published in:Biomass & bioenergy 1995, Vol.8 (1), p.29-38
Main Authors: Blander, Milton, Ragland, Kenneth W., Cole, Roger L., Libera, Joseph A., Pelton, Arthur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Equilibrium calculations were performed to determine the inorganic chemistry involved in the combustion of aspen woodchips with a large excess of oxygen at pressures of 1, 4 and 10 atm. At 1 atm, a potassium-sulfate-rich liquid forms at high temperatures (1050°C) and persists to a temperature of between 975 and 1000°C, where it crystallizes to form solid alkali sulfates. At 4 and 10 atm the liquid crystallizes above 1000°C. The formation of sulfate is limited by the low abundance of sulfur, which is greatly depleted at 1000°C. A large fraction of the alkali remains in the vapor as the KOH molecule at this temperature. Both KOH and CaO react with CO 2 in the vapor to form the solid carbonates K 2Ca 2(CO 3) 3 and CaCO 3 below 800° at 1 atm. At 4 atm, a potentially corrosive molten carbonate forms at temperatures in the range of 800–875°C. Below 800°C all the carbonate crystallizes to CaCO 3 and K 2Ca 2(CO 3) 3. Upon cooling at 10 atm, the liquid forms somewhat above 900°C and crystallizes somewhat above 800°C to form these solid carbonates. These considerations are applied to a gravel-bed combustor/gas turbine system and methods for improving its operation by temperature control and hot gas cleanup are reported. An economic analysis and future prospects in the United States are discussed to provide a context for this work.
ISSN:0961-9534
1873-2909
DOI:10.1016/0961-9534(94)00093-9