Loading…
Symmetry-protected topological phases, generalized Laughlin argument, and orientifolds
We generalize Laughlin's flux insertion argument, originally discussed in the context of the quantum Hall effect, to topological phases protected by non-on-site unitary symmetries, in particular by parity symmetry or parity symmetry combined with an on-site unitary symmetry. As a model, we disc...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-10, Vol.90 (16), Article 165134 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We generalize Laughlin's flux insertion argument, originally discussed in the context of the quantum Hall effect, to topological phases protected by non-on-site unitary symmetries, in particular by parity symmetry or parity symmetry combined with an on-site unitary symmetry. As a model, we discuss fermionic or bosonic systems in two spatial dimensions with CP symmetry, which are, by the CRT theorem, related to time-reversal symmetric topological insulators (e.g., the quantum spin Hall effect). In particular, we develop the stability/instability (or "gappability"/"ingappablity") criteria for nonchiral conformal field theories with parity symmetry that may emerge as an edge state of a symmetry-protected topological phase. A necessary ingredient, as it turns out, is to consider the edge conformal field theories on unoriented surfaces, such as the Klein bottle, which arises naturally from enforcing parity symmetry by a projection operation. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.90.165134 |