Loading…

Improving prediction of exchange rates using Differential EMD

► The algorithm of Differential EMD has the capability of smoothing and reducing the noise. ► The SVR model can predict exchange rates. ► In prediction, the Differential EMD and SVR model outperforms the MS-GARCH model. Volatility is a key parameter when measuring the size of errors made in modellin...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2013-01, Vol.40 (1), p.377-384
Main Authors: Premanode, Bhusana, Toumazou, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► The algorithm of Differential EMD has the capability of smoothing and reducing the noise. ► The SVR model can predict exchange rates. ► In prediction, the Differential EMD and SVR model outperforms the MS-GARCH model. Volatility is a key parameter when measuring the size of errors made in modelling returns and other financial variables such as exchanged rates. The autoregressive moving-average (ARMA) model is a linear process in time series; whilst in the nonlinear system, the generalised autoregressive conditional heteroskedasticity (GARCH) and Markov switching GARCH (MS-GARCH) have been widely applied. In statistical learning theory, support vector regression (SVR) plays an important role in predicting nonlinear and nonstationary time series variables. In this paper, we propose a new algorithm, differential Empirical Mode Decomposition (EMD) for improving prediction of exchange rates under support vector regression (SVR). The new algorithm of Differential EMD has the capability of smoothing and reducing the noise, whereas the SVR model with the filtered dataset improves predicting the exchange rates. Simulations results consisting of the Differential EMD and SVR model show that our model outperforms simulations by a state-of-the-art MS-GARCH and Markov switching regression (MSR) models.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2012.07.048