Loading…

Improving prediction of exchange rates using Differential EMD

► The algorithm of Differential EMD has the capability of smoothing and reducing the noise. ► The SVR model can predict exchange rates. ► In prediction, the Differential EMD and SVR model outperforms the MS-GARCH model. Volatility is a key parameter when measuring the size of errors made in modellin...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2013-01, Vol.40 (1), p.377-384
Main Authors: Premanode, Bhusana, Toumazou, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-b32ee95b957b2d04cff7b8d196a08b6b554dbfed64d9f90e10d5ffa3e69666ac3
cites cdi_FETCH-LOGICAL-c396t-b32ee95b957b2d04cff7b8d196a08b6b554dbfed64d9f90e10d5ffa3e69666ac3
container_end_page 384
container_issue 1
container_start_page 377
container_title Expert systems with applications
container_volume 40
creator Premanode, Bhusana
Toumazou, Chris
description ► The algorithm of Differential EMD has the capability of smoothing and reducing the noise. ► The SVR model can predict exchange rates. ► In prediction, the Differential EMD and SVR model outperforms the MS-GARCH model. Volatility is a key parameter when measuring the size of errors made in modelling returns and other financial variables such as exchanged rates. The autoregressive moving-average (ARMA) model is a linear process in time series; whilst in the nonlinear system, the generalised autoregressive conditional heteroskedasticity (GARCH) and Markov switching GARCH (MS-GARCH) have been widely applied. In statistical learning theory, support vector regression (SVR) plays an important role in predicting nonlinear and nonstationary time series variables. In this paper, we propose a new algorithm, differential Empirical Mode Decomposition (EMD) for improving prediction of exchange rates under support vector regression (SVR). The new algorithm of Differential EMD has the capability of smoothing and reducing the noise, whereas the SVR model with the filtered dataset improves predicting the exchange rates. Simulations results consisting of the Differential EMD and SVR model show that our model outperforms simulations by a state-of-the-art MS-GARCH and Markov switching regression (MSR) models.
doi_str_mv 10.1016/j.eswa.2012.07.048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701031682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417412009037</els_id><sourcerecordid>1701031682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b32ee95b957b2d04cff7b8d196a08b6b554dbfed64d9f90e10d5ffa3e69666ac3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwB5iyILEknBPHjiUYUPmqVMQCs-U4Z3CVJsVOC_x7HBUxwnTLc--99xBySiGjQPnFMsPwobMcaJ6ByIBVe2RCK1GkXMhin0xAliJlVLBDchTCEoAKADEhV_PV2vdb170ma4-NM4Pru6S3CX6aN929YuL1gCHZhBG5cdaix25wuk1uH2-OyYHVbcCTnzklL3e3z7OHdPF0P59dL1JTSD6kdZEjyrKOHeq8AWasFXXVUMk1VDWvy5I1tcWGs0ZaCUihKa3VBXLJOdemmJLzXW7s-r7BMKiVCwbbVnfYb4KKz1AoKK_y_9GCSSZyycqI5jvU-D4Ej1atvVtp_6UoqFGrWqpRqxq1KhAqao1LZz_5OhjdWq8748LvZi6iaUnH8Msdh9HL1qFXwTjsTHTs0Qyq6d1fZ74BnTKNkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349472945</pqid></control><display><type>article</type><title>Improving prediction of exchange rates using Differential EMD</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Premanode, Bhusana ; Toumazou, Chris</creator><creatorcontrib>Premanode, Bhusana ; Toumazou, Chris</creatorcontrib><description>► The algorithm of Differential EMD has the capability of smoothing and reducing the noise. ► The SVR model can predict exchange rates. ► In prediction, the Differential EMD and SVR model outperforms the MS-GARCH model. Volatility is a key parameter when measuring the size of errors made in modelling returns and other financial variables such as exchanged rates. The autoregressive moving-average (ARMA) model is a linear process in time series; whilst in the nonlinear system, the generalised autoregressive conditional heteroskedasticity (GARCH) and Markov switching GARCH (MS-GARCH) have been widely applied. In statistical learning theory, support vector regression (SVR) plays an important role in predicting nonlinear and nonstationary time series variables. In this paper, we propose a new algorithm, differential Empirical Mode Decomposition (EMD) for improving prediction of exchange rates under support vector regression (SVR). The new algorithm of Differential EMD has the capability of smoothing and reducing the noise, whereas the SVR model with the filtered dataset improves predicting the exchange rates. Simulations results consisting of the Differential EMD and SVR model show that our model outperforms simulations by a state-of-the-art MS-GARCH and Markov switching regression (MSR) models.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2012.07.048</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer simulation ; Empirical Mode Decomposition ; Exact sciences and technology ; Exchange rates ; Inference from stochastic processes; time series analysis ; Linear inference, regression ; Markov processes ; Markov switching GARCH ; Markov switching regression ; Mathematical analysis ; Mathematical models ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Prediction ; Probability and statistics ; Regression ; Sciences and techniques of general use ; Statistics ; Support vector regression ; Time series ; Vectors (mathematics)</subject><ispartof>Expert systems with applications, 2013-01, Vol.40 (1), p.377-384</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b32ee95b957b2d04cff7b8d196a08b6b554dbfed64d9f90e10d5ffa3e69666ac3</citedby><cites>FETCH-LOGICAL-c396t-b32ee95b957b2d04cff7b8d196a08b6b554dbfed64d9f90e10d5ffa3e69666ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27095915$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Premanode, Bhusana</creatorcontrib><creatorcontrib>Toumazou, Chris</creatorcontrib><title>Improving prediction of exchange rates using Differential EMD</title><title>Expert systems with applications</title><description>► The algorithm of Differential EMD has the capability of smoothing and reducing the noise. ► The SVR model can predict exchange rates. ► In prediction, the Differential EMD and SVR model outperforms the MS-GARCH model. Volatility is a key parameter when measuring the size of errors made in modelling returns and other financial variables such as exchanged rates. The autoregressive moving-average (ARMA) model is a linear process in time series; whilst in the nonlinear system, the generalised autoregressive conditional heteroskedasticity (GARCH) and Markov switching GARCH (MS-GARCH) have been widely applied. In statistical learning theory, support vector regression (SVR) plays an important role in predicting nonlinear and nonstationary time series variables. In this paper, we propose a new algorithm, differential Empirical Mode Decomposition (EMD) for improving prediction of exchange rates under support vector regression (SVR). The new algorithm of Differential EMD has the capability of smoothing and reducing the noise, whereas the SVR model with the filtered dataset improves predicting the exchange rates. Simulations results consisting of the Differential EMD and SVR model show that our model outperforms simulations by a state-of-the-art MS-GARCH and Markov switching regression (MSR) models.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Empirical Mode Decomposition</subject><subject>Exact sciences and technology</subject><subject>Exchange rates</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Linear inference, regression</subject><subject>Markov processes</subject><subject>Markov switching GARCH</subject><subject>Markov switching regression</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Prediction</subject><subject>Probability and statistics</subject><subject>Regression</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Support vector regression</subject><subject>Time series</subject><subject>Vectors (mathematics)</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwB5iyILEknBPHjiUYUPmqVMQCs-U4Z3CVJsVOC_x7HBUxwnTLc--99xBySiGjQPnFMsPwobMcaJ6ByIBVe2RCK1GkXMhin0xAliJlVLBDchTCEoAKADEhV_PV2vdb170ma4-NM4Pru6S3CX6aN929YuL1gCHZhBG5cdaix25wuk1uH2-OyYHVbcCTnzklL3e3z7OHdPF0P59dL1JTSD6kdZEjyrKOHeq8AWasFXXVUMk1VDWvy5I1tcWGs0ZaCUihKa3VBXLJOdemmJLzXW7s-r7BMKiVCwbbVnfYb4KKz1AoKK_y_9GCSSZyycqI5jvU-D4Ej1atvVtp_6UoqFGrWqpRqxq1KhAqao1LZz_5OhjdWq8748LvZi6iaUnH8Msdh9HL1qFXwTjsTHTs0Qyq6d1fZ74BnTKNkg</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Premanode, Bhusana</creator><creator>Toumazou, Chris</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Improving prediction of exchange rates using Differential EMD</title><author>Premanode, Bhusana ; Toumazou, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b32ee95b957b2d04cff7b8d196a08b6b554dbfed64d9f90e10d5ffa3e69666ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Empirical Mode Decomposition</topic><topic>Exact sciences and technology</topic><topic>Exchange rates</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Linear inference, regression</topic><topic>Markov processes</topic><topic>Markov switching GARCH</topic><topic>Markov switching regression</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Prediction</topic><topic>Probability and statistics</topic><topic>Regression</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Support vector regression</topic><topic>Time series</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Premanode, Bhusana</creatorcontrib><creatorcontrib>Toumazou, Chris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Premanode, Bhusana</au><au>Toumazou, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving prediction of exchange rates using Differential EMD</atitle><jtitle>Expert systems with applications</jtitle><date>2013-01</date><risdate>2013</risdate><volume>40</volume><issue>1</issue><spage>377</spage><epage>384</epage><pages>377-384</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► The algorithm of Differential EMD has the capability of smoothing and reducing the noise. ► The SVR model can predict exchange rates. ► In prediction, the Differential EMD and SVR model outperforms the MS-GARCH model. Volatility is a key parameter when measuring the size of errors made in modelling returns and other financial variables such as exchanged rates. The autoregressive moving-average (ARMA) model is a linear process in time series; whilst in the nonlinear system, the generalised autoregressive conditional heteroskedasticity (GARCH) and Markov switching GARCH (MS-GARCH) have been widely applied. In statistical learning theory, support vector regression (SVR) plays an important role in predicting nonlinear and nonstationary time series variables. In this paper, we propose a new algorithm, differential Empirical Mode Decomposition (EMD) for improving prediction of exchange rates under support vector regression (SVR). The new algorithm of Differential EMD has the capability of smoothing and reducing the noise, whereas the SVR model with the filtered dataset improves predicting the exchange rates. Simulations results consisting of the Differential EMD and SVR model show that our model outperforms simulations by a state-of-the-art MS-GARCH and Markov switching regression (MSR) models.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2012.07.048</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2013-01, Vol.40 (1), p.377-384
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1701031682
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer simulation
Empirical Mode Decomposition
Exact sciences and technology
Exchange rates
Inference from stochastic processes
time series analysis
Linear inference, regression
Markov processes
Markov switching GARCH
Markov switching regression
Mathematical analysis
Mathematical models
Mathematics
Operational research and scientific management
Operational research. Management science
Portfolio theory
Prediction
Probability and statistics
Regression
Sciences and techniques of general use
Statistics
Support vector regression
Time series
Vectors (mathematics)
title Improving prediction of exchange rates using Differential EMD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20prediction%20of%20exchange%20rates%20using%20Differential%20EMD&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Premanode,%20Bhusana&rft.date=2013-01&rft.volume=40&rft.issue=1&rft.spage=377&rft.epage=384&rft.pages=377-384&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2012.07.048&rft_dat=%3Cproquest_cross%3E1701031682%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-b32ee95b957b2d04cff7b8d196a08b6b554dbfed64d9f90e10d5ffa3e69666ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349472945&rft_id=info:pmid/&rfr_iscdi=true