Loading…
Antimicrobial Poly(2-methyloxazoline)s with Bioswitchable Activity through Satellite Group Modification
Biocides are widely used for preventing the spread of microbial infections and fouling of materials. Since their use can build up microbial resistance and cause unpredictable long‐term environmental problems, new biocidal agents are required. In this study, we demonstrate a concept in which an antim...
Saved in:
Published in: | Angewandte Chemie International Edition 2014-04, Vol.53 (15), p.3830-3834 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biocides are widely used for preventing the spread of microbial infections and fouling of materials. Since their use can build up microbial resistance and cause unpredictable long‐term environmental problems, new biocidal agents are required. In this study, we demonstrate a concept in which an antimicrobial polymer is deactivated by the cleavage of a single group. Following the satellite group approach, a biocidal quaternary ammonium group was linked through a poly(2‐methyloxazoline) to an ester satellite group. The polymer with an octyl‐3‐propionoate satellite group shows very good antimicrobial activity against Gram‐positive bacterial strains. The biocidal polymer was also found to have low hemotoxicity, resulting in a high HC50/MIC value of 120 for S. aureus. Cleaving the ester satellite group resulted in a 30‐fold decrease in antimicrobial activity, proving the concept valid. The satellite group could also be cleaved by lipase showing that the antimicrobial activity of the new biocidal polymers is indeed bioswitchable.
Biocides are widely used for preventing the spread of microbial infections and the fouling of materials. Since their application can build up microbial resistance and cause unpredictable long‐term environmental problems, new biocidal agents are required. In a novel approach an antimicrobial polymer is deactivated by hydrolysis of an ester group through the action of a lipase. The crucial feature is the mutual interaction of the two endgroups of the polymer. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201311150 |