Loading…
A fast-marching like algorithm for geometrical shock dynamics
We develop a new algorithm for the computation of the Geometrical Shock Dynamics (GSD) model. The method relies on the fast-marching paradigm and enables the discrete evaluation of the first arrival time of a shock wave and its local velocity on a Cartesian grid. The proposed algorithm is based on a...
Saved in:
Published in: | Journal of computational physics 2015-03, Vol.284, p.206-229 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop a new algorithm for the computation of the Geometrical Shock Dynamics (GSD) model. The method relies on the fast-marching paradigm and enables the discrete evaluation of the first arrival time of a shock wave and its local velocity on a Cartesian grid. The proposed algorithm is based on a first order upwind finite difference scheme and reduces to a local nonlinear system of two equations solved by an iterative procedure. Reference solutions are built for a smooth radial configuration and for the 2D Riemann problem. The link between the GSD model and p-systems is given. Numerical experiments demonstrate the efficiency of the scheme and its ability to handle singularities. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2014.12.019 |