Loading…
Reaction mechanism from quantum molecular dynamics for the initial thermal decomposition of 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide (MTO) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (MTO3N), promising green energetic materials
Klapötke and co-workers recently designed two new materials, 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide ( MTO ) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide ( MTO3N ), envisioned as candidates for green high-energy materials. However, all attempts at synthesis have failed. In order to validate...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (22), p.12044-12050 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Klapötke and co-workers recently designed two new materials, 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide (
MTO
) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (
MTO3N
), envisioned as candidates for green high-energy materials. However, all attempts at synthesis have failed. In order to validate the expected properties for these systems and to determine why these materials are too unstable to synthesize, we used the PBE flavor of Density Functional Theory (DFT) to predict the crystal structures for
MTO
and
MTO3N
and then we carried out DFT molecular dynamics simulations (DFT-MD) to determine the initial reaction mechanisms for decomposition. Klapötke estimated that
MTO
would have a density of
ρ
= 1.859 g cm
−3
with an estimated detonation velocity (
D
v
) of 8.979 km s
−1
, making it comparable to RDX (
ρ
= 1.82 g cm
−3
,
D
v
= 8.75 km s
−1
) and β-HMX (
ρ
= 1.91 g cm
−3
,
D
v
= 9.10 km s
−1
). His estimated impact sensitivity >30 J, make it much better than HMX (7 J) and RDX (7.5 J). Our predicted crystal structure for
MTO
(
P
2
(1)
space group) leads to
ρ
= 1.859 g cm
−3
, in good agreement with expectations. Our DFT-MD studies find that the first step in the decomposition of
MTO
is intermolecular hydrogen-transfer reaction (barrier 3.0 kcal mol
−1
) which is followed quickly by H
2
O and NO release with reaction barriers of 46.5 and 35.5 kcal mol
−1
. In contrast for
MTO3N
(
P
2
(1)
/
c
predicted space group), we find that the first steps are a bimolecular decomposition to release NO
2
(Δ
H
= 44.1 kcal mol
−1
, Δ
G
= 54.7 kcal mol
−1
) simultaneous with unimolecular NO
2
cleavage (Δ
H
= 59.9 and Δ
G
= 58.2 kcal mol
−1
) a unique initial reaction among EMs. These results suggest that
MTO3N
would be significantly more thermally stabile (barrier > 6.0 kcal mol
−1
higher) than RDX and HMX, making it an excellent candidate to be insensitive new green energetic materials. However we find that
MTO
leads to very favorable hydrogen transfer reactions that may complicate synthesis and crystallization, making
MTO3N
the more promising system. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/C5TA02486B |