Loading…

Interplay between nitrogen dopants and native point defects in graphene

To understand the interaction between nitrogen dopants and native point defects in graphene, we have studied the energetic stability of N-doped graphene with vacancies and Stone-Wales (SW) defect by performing the density functional theory calculations. Our results show that N substitution energetic...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-04, Vol.85 (16), Article 165439
Main Authors: Hou, Zhufeng, Wang, Xianlong, Ikeda, Takashi, Terakura, Kiyoyuki, Oshima, Masaharu, Kakimoto, Masa-aki, Miyata, Seizo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To understand the interaction between nitrogen dopants and native point defects in graphene, we have studied the energetic stability of N-doped graphene with vacancies and Stone-Wales (SW) defect by performing the density functional theory calculations. Our results show that N substitution energetically prefers to occur at the carbon atoms near the defects, especially for those sites with larger bond shortening, indicating that the defect-induced strain plays an important role in the stability of N dopants in defective graphene. In the presence of monovacancy, the most stable position for N dopant is the pyridinelike configuration, while for other point defects studied (SW defect and divacancies) N prefers a site in the pentagonal ring. The effect of native point defects on N dopants is quite strong: While the N doping is endothermic in defect-free graphene, it becomes exothermic for defective graphene. Our results imply that the native point defect and N dopant attract each other, i.e., cooperative effect, which means that substitutional N dopants would increase the probability of point defect generation and vice versa. Our findings are supported by recent experimental studies on the N doping of graphene. Furthermore we point out possibilities of aggregation of multiple N dopants near native point defects. Finally we make brief comments on the effect of Fe adsorption on the stability of N dopant aggregation.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.85.165439