Loading…

The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds

Protein-disulfide isomerase (PDI) is an abundant protein of the endoplasmic reticulum that catalyzes dithiol oxidation and disulfide bond reduction and isomerization using the active site CGHC. Haploid pdi1 delta Saccharomyces cerevisiae are inviable, but can be complemented with either a wild-type...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1995-11, Vol.270 (47), p.28006-28009
Main Authors: Laboissiere, M.C.A. (University of Wisconsin, Madison, WI.), Sturley, S.L, Raines, R.T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein-disulfide isomerase (PDI) is an abundant protein of the endoplasmic reticulum that catalyzes dithiol oxidation and disulfide bond reduction and isomerization using the active site CGHC. Haploid pdi1 delta Saccharomyces cerevisiae are inviable, but can be complemented with either a wild-type rat PDI gene or a mutant gene coding for CGHS PDI (shufflease). In contrast, pdi1 delta yeast cannot be complemented with a gene coding for SGHC PDI. In vitro, shufflease is an efficient catalyst for the isomerization of existing disulfide bonds but not for dithiol oxidation or disulfide bond reduction. SGHC PDI catalyzes none of these processes. These results indicate that in vivo protein folding pathways contain intermediates with non-native disulfide bonds, and that the essential role of PDI is to unscramble these intermediates
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.47.28006