Loading…

Site promiscuity of coliphage HK022 integrase as a tool for gene therapy

The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp...

Full description

Saved in:
Bibliographic Details
Published in:Gene therapy 2015-07, Vol.22 (7), p.521-527
Main Authors: Kolot, M, Malchin, N, Elias, A, Gritsenko, N, Yagil, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c673t-a0075c5600e55144aaecce09c6e88d42eac26d0b5198263966826f0acaf7ad363
cites cdi_FETCH-LOGICAL-c673t-a0075c5600e55144aaecce09c6e88d42eac26d0b5198263966826f0acaf7ad363
container_end_page 527
container_issue 7
container_start_page 521
container_title Gene therapy
container_volume 22
creator Kolot, M
Malchin, N
Elias, A
Gritsenko, N
Yagil, E
description The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp crossover site or ‘overlap’ (O). We show that replacing O with a random 7 bp sequence supports Int-mediated site-specific recombination as long as the cognate and larger phage recombination site attP features an identical O sequence. This promiscuity allowed us to identify on the human genome several native active secondary attB sites (‘ attB ’) with random overlaps that flank human deleterious mutations, raising the prospect of using such sites to cure the ‘ attB ’-flanked mutations by Int-catalyzed RMCE (recombinase-mediated cassette exchange) reactions. An analysis of such active and inactive ‘ attB ’s suggested a minimal 14–15 bp attB consensus sequence (instead of the 21 bp) with a reduced 3 bp palindrome.
doi_str_mv 10.1038/gt.2015.9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701490623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421626519</galeid><sourcerecordid>A421626519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-a0075c5600e55144aaecce09c6e88d42eac26d0b5198263966826f0acaf7ad363</originalsourceid><addsrcrecordid>eNqdkl1rFDEUhoModq1e-AckIIgKsyaZfMxclqJusSBYvQ6n2TOzKbOTNcmA--_N0Gq7KgqSiwM5z3nPBy8hTzlbclY3b_q8FIyrZXuPLLg0ulJSi_tkwVrdVoaL5og8SumKMSZNIx6SI6GMFqKRC7K68BnpLoatT27yeU9DR10Y_G4DPdLVByYE9WPGPkJCCokCzSEMtAuR9jgizRuMsNs_Jg86GBI-uYnH5Mu7t59PV9X5x_dnpyfnldOmzhUwZpRTmjFUiksJgM4ha53GpllLgeCEXrNLxdtG6LrVuoSOgYPOwLrW9TF5ea1bZv46Ycp2nhyHAUYMU7LcMC5bpkX9b1S3teGtYqagz39Br8IUx7KILUJc10YK_TeqaAmjpJD8luphQOvHLuQIbm5tT6TgWuiyXKGWf6DKW-PWuzBi58v_QcGrg4LCZPyWe5hSsmcXnw7ZF3fYDcKQNykMU_ZhTP8BmtvuLoaUInZ2F_0W4t5yZmcT2j7b2YR2Fn12c6bpcovrn-QP1xXg9TWQSmrsMd65429q3wGkJtzz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692754241</pqid></control><display><type>article</type><title>Site promiscuity of coliphage HK022 integrase as a tool for gene therapy</title><source>Springer Link</source><creator>Kolot, M ; Malchin, N ; Elias, A ; Gritsenko, N ; Yagil, E</creator><creatorcontrib>Kolot, M ; Malchin, N ; Elias, A ; Gritsenko, N ; Yagil, E</creatorcontrib><description>The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp crossover site or ‘overlap’ (O). We show that replacing O with a random 7 bp sequence supports Int-mediated site-specific recombination as long as the cognate and larger phage recombination site attP features an identical O sequence. This promiscuity allowed us to identify on the human genome several native active secondary attB sites (‘ attB ’) with random overlaps that flank human deleterious mutations, raising the prospect of using such sites to cure the ‘ attB ’-flanked mutations by Int-catalyzed RMCE (recombinase-mediated cassette exchange) reactions. An analysis of such active and inactive ‘ attB ’s suggested a minimal 14–15 bp attB consensus sequence (instead of the 21 bp) with a reduced 3 bp palindrome.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2015.9</identifier><identifier>PMID: 25762284</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/41 ; 631/337 ; 631/337/149 ; Attachment Sites, Microbiological ; Binding sites ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Chromosomes ; Coliphages - genetics ; Coliphages - metabolism ; Conserved sequence ; Escherichia coli K12 ; Gene Expression ; Gene mutations ; Gene Therapy ; Genetic recombination ; Genetic Therapy ; Genome, Human ; Genomes ; HEK293 Cells ; Human Genetics ; Humans ; Influence ; Integrase ; Integrases - genetics ; Integrases - metabolism ; Mutation ; Nanotechnology ; Nucleotide sequence ; original-article ; Phages ; Promiscuity ; Recombinase ; Recombination ; Recombination, Genetic</subject><ispartof>Gene therapy, 2015-07, Vol.22 (7), p.521-527</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-a0075c5600e55144aaecce09c6e88d42eac26d0b5198263966826f0acaf7ad363</citedby><cites>FETCH-LOGICAL-c673t-a0075c5600e55144aaecce09c6e88d42eac26d0b5198263966826f0acaf7ad363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25762284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolot, M</creatorcontrib><creatorcontrib>Malchin, N</creatorcontrib><creatorcontrib>Elias, A</creatorcontrib><creatorcontrib>Gritsenko, N</creatorcontrib><creatorcontrib>Yagil, E</creatorcontrib><title>Site promiscuity of coliphage HK022 integrase as a tool for gene therapy</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp crossover site or ‘overlap’ (O). We show that replacing O with a random 7 bp sequence supports Int-mediated site-specific recombination as long as the cognate and larger phage recombination site attP features an identical O sequence. This promiscuity allowed us to identify on the human genome several native active secondary attB sites (‘ attB ’) with random overlaps that flank human deleterious mutations, raising the prospect of using such sites to cure the ‘ attB ’-flanked mutations by Int-catalyzed RMCE (recombinase-mediated cassette exchange) reactions. An analysis of such active and inactive ‘ attB ’s suggested a minimal 14–15 bp attB consensus sequence (instead of the 21 bp) with a reduced 3 bp palindrome.</description><subject>45</subject><subject>45/41</subject><subject>631/337</subject><subject>631/337/149</subject><subject>Attachment Sites, Microbiological</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Chromosomes</subject><subject>Coliphages - genetics</subject><subject>Coliphages - metabolism</subject><subject>Conserved sequence</subject><subject>Escherichia coli K12</subject><subject>Gene Expression</subject><subject>Gene mutations</subject><subject>Gene Therapy</subject><subject>Genetic recombination</subject><subject>Genetic Therapy</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Influence</subject><subject>Integrase</subject><subject>Integrases - genetics</subject><subject>Integrases - metabolism</subject><subject>Mutation</subject><subject>Nanotechnology</subject><subject>Nucleotide sequence</subject><subject>original-article</subject><subject>Phages</subject><subject>Promiscuity</subject><subject>Recombinase</subject><subject>Recombination</subject><subject>Recombination, Genetic</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqdkl1rFDEUhoModq1e-AckIIgKsyaZfMxclqJusSBYvQ6n2TOzKbOTNcmA--_N0Gq7KgqSiwM5z3nPBy8hTzlbclY3b_q8FIyrZXuPLLg0ulJSi_tkwVrdVoaL5og8SumKMSZNIx6SI6GMFqKRC7K68BnpLoatT27yeU9DR10Y_G4DPdLVByYE9WPGPkJCCokCzSEMtAuR9jgizRuMsNs_Jg86GBI-uYnH5Mu7t59PV9X5x_dnpyfnldOmzhUwZpRTmjFUiksJgM4ha53GpllLgeCEXrNLxdtG6LrVuoSOgYPOwLrW9TF5ea1bZv46Ycp2nhyHAUYMU7LcMC5bpkX9b1S3teGtYqagz39Br8IUx7KILUJc10YK_TeqaAmjpJD8luphQOvHLuQIbm5tT6TgWuiyXKGWf6DKW-PWuzBi58v_QcGrg4LCZPyWe5hSsmcXnw7ZF3fYDcKQNykMU_ZhTP8BmtvuLoaUInZ2F_0W4t5yZmcT2j7b2YR2Fn12c6bpcovrn-QP1xXg9TWQSmrsMd65429q3wGkJtzz</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Kolot, M</creator><creator>Malchin, N</creator><creator>Elias, A</creator><creator>Gritsenko, N</creator><creator>Yagil, E</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20150701</creationdate><title>Site promiscuity of coliphage HK022 integrase as a tool for gene therapy</title><author>Kolot, M ; Malchin, N ; Elias, A ; Gritsenko, N ; Yagil, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-a0075c5600e55144aaecce09c6e88d42eac26d0b5198263966826f0acaf7ad363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>45</topic><topic>45/41</topic><topic>631/337</topic><topic>631/337/149</topic><topic>Attachment Sites, Microbiological</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Chromosomes</topic><topic>Coliphages - genetics</topic><topic>Coliphages - metabolism</topic><topic>Conserved sequence</topic><topic>Escherichia coli K12</topic><topic>Gene Expression</topic><topic>Gene mutations</topic><topic>Gene Therapy</topic><topic>Genetic recombination</topic><topic>Genetic Therapy</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Influence</topic><topic>Integrase</topic><topic>Integrases - genetics</topic><topic>Integrases - metabolism</topic><topic>Mutation</topic><topic>Nanotechnology</topic><topic>Nucleotide sequence</topic><topic>original-article</topic><topic>Phages</topic><topic>Promiscuity</topic><topic>Recombinase</topic><topic>Recombination</topic><topic>Recombination, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolot, M</creatorcontrib><creatorcontrib>Malchin, N</creatorcontrib><creatorcontrib>Elias, A</creatorcontrib><creatorcontrib>Gritsenko, N</creatorcontrib><creatorcontrib>Yagil, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolot, M</au><au>Malchin, N</au><au>Elias, A</au><au>Gritsenko, N</au><au>Yagil, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site promiscuity of coliphage HK022 integrase as a tool for gene therapy</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>22</volume><issue>7</issue><spage>521</spage><epage>527</epage><pages>521-527</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp crossover site or ‘overlap’ (O). We show that replacing O with a random 7 bp sequence supports Int-mediated site-specific recombination as long as the cognate and larger phage recombination site attP features an identical O sequence. This promiscuity allowed us to identify on the human genome several native active secondary attB sites (‘ attB ’) with random overlaps that flank human deleterious mutations, raising the prospect of using such sites to cure the ‘ attB ’-flanked mutations by Int-catalyzed RMCE (recombinase-mediated cassette exchange) reactions. An analysis of such active and inactive ‘ attB ’s suggested a minimal 14–15 bp attB consensus sequence (instead of the 21 bp) with a reduced 3 bp palindrome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25762284</pmid><doi>10.1038/gt.2015.9</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2015-07, Vol.22 (7), p.521-527
issn 0969-7128
1476-5462
language eng
recordid cdi_proquest_miscellaneous_1701490623
source Springer Link
subjects 45
45/41
631/337
631/337/149
Attachment Sites, Microbiological
Binding sites
Biomedical and Life Sciences
Biomedicine
Cell Biology
Chromosomes
Coliphages - genetics
Coliphages - metabolism
Conserved sequence
Escherichia coli K12
Gene Expression
Gene mutations
Gene Therapy
Genetic recombination
Genetic Therapy
Genome, Human
Genomes
HEK293 Cells
Human Genetics
Humans
Influence
Integrase
Integrases - genetics
Integrases - metabolism
Mutation
Nanotechnology
Nucleotide sequence
original-article
Phages
Promiscuity
Recombinase
Recombination
Recombination, Genetic
title Site promiscuity of coliphage HK022 integrase as a tool for gene therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%20promiscuity%20of%20coliphage%20HK022%20integrase%20as%20a%20tool%20for%20gene%20therapy&rft.jtitle=Gene%20therapy&rft.au=Kolot,%20M&rft.date=2015-07-01&rft.volume=22&rft.issue=7&rft.spage=521&rft.epage=527&rft.pages=521-527&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2015.9&rft_dat=%3Cgale_proqu%3EA421626519%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c673t-a0075c5600e55144aaecce09c6e88d42eac26d0b5198263966826f0acaf7ad363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692754241&rft_id=info:pmid/25762284&rft_galeid=A421626519&rfr_iscdi=true