Loading…

The Reelin Receptor ApoER2 Recruits JNK-interacting Proteins-1 and -2

Correct positioning of neurons during embryonic development of the brain depends, among other processes, on the proper transmission of the reelin signal into the migrating cells via the interplay of its receptors with cytoplasmic signal transducers. Cellular components of this signaling pathway char...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-08, Vol.275 (33), p.25625-25632
Main Authors: Stockinger, Walter, Brandes, Christian, Fasching, Daniela, Hermann, Marcela, Gotthardt, Michael, Herz, Joachim, Schneider, Wolfgang J., Nimpf, Johannes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Correct positioning of neurons during embryonic development of the brain depends, among other processes, on the proper transmission of the reelin signal into the migrating cells via the interplay of its receptors with cytoplasmic signal transducers. Cellular components of this signaling pathway characterized to date are cell surface receptors for reelin like apolipoprotein E receptor 2 (ApoER2), very low density lipoprotein receptor (VLDLR), and cadherin-related neuronal receptors, and intracellular components like Disabled-1 and the nonreceptor tyrosine kinase Fyn, which bind to the intracellular domains of the ApoER2 and VLDL receptor or of cadherin-related neuronal receptors, respectively. Here we show that ApoER2, but not VLDLR, also binds the family of JNK-interacting proteins (JIPs), which act as molecular scaffolds for the JNK-signaling pathway. The ApoER2 binding domain on JIP-2 does not overlap with the binding sites for MLK3, MKK7, and JNK. These results suggest that ApoER2 is able to assemble a multiprotein complex containing Disabled-1 and JIPs, together with their binding partners, to the cell surface of neurons. This complex might participate in ApoER2-specific reelin signaling and thus would explain the different phenotype of mice lacking the ApoER2 from that of VLDLR-deficient mice.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M004119200