Loading…

Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators

A powerful new paradigm for single-particle microscopy on nonluminescent targets is reported using ultrahigh-quality factor optical microresonators as the critical detecting element. The approach is photothermal in nature as the microresonators are used to detect heat dissipated from individual phot...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2014-06, Vol.5 (11), p.1917-1923
Main Authors: Heylman, Kevin D, Knapper, Kassandra A, Goldsmith, Randall H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A powerful new paradigm for single-particle microscopy on nonluminescent targets is reported using ultrahigh-quality factor optical microresonators as the critical detecting element. The approach is photothermal in nature as the microresonators are used to detect heat dissipated from individual photoexcited nano-objects. The method potentially satisfies an outstanding need for single-particle microscopy on nonluminescent objects of increasingly smaller absorption cross section. Simultaneously, our approach couples the sensitivity of label-free detection using optical microresonators with a means of deriving chemical information on the target species, a significant benefit. As a demonstration, individual nonphotoluminescent multiwalled carbon nanotubes are spatially mapped, and the per-atom absorption cross section is determined. Finite-element simulations are employed to model the relevant thermal processes and elucidate the sensing mechanism. Finally, a direct pathway to the extension of this new technique to molecules is laid out, leading to a potent new method of performing measurements on individual molecules.
ISSN:1948-7185
1948-7185
DOI:10.1021/jz500781g