Loading…

Site-Specific Phosphorylation of IκBα by a Novel Ubiquitination-Dependent Protein Kinase Activity

Signal-induced activation of the transcription factor NF-κB requires specific phosphorylation of the inhibitor IκBα and its subsequent proteolytic degradation. Phosphorylation of serine residues 32 and 36 targets IκBα to the ubiquitin (Ub)–proteasome pathway. Here we report the identification of a l...

Full description

Saved in:
Bibliographic Details
Published in:Cell 1996, Vol.84 (6), p.853-862
Main Authors: Chen, Zhijian J, Parent, Lana, Maniatis, Tom
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Signal-induced activation of the transcription factor NF-κB requires specific phosphorylation of the inhibitor IκBα and its subsequent proteolytic degradation. Phosphorylation of serine residues 32 and 36 targets IκBα to the ubiquitin (Ub)–proteasome pathway. Here we report the identification of a large, multisubunit kinase (molecular mass ∼700 kDa) that phosphorylates IκBα at S32 and S36. Remarkably, the activity of this kinase requires the Ub-activating enzyme (E1), a specific Ub carrier protein (E2) of the Ubc4/Ubc5 family, and Ub. We also show that a ubiquitination event in the kinase complex is a prerequisite for specific phosphorylation of IκBα. Thus, ubiquitination serves a novel regulatory function that does not involve proteolysis.
ISSN:0092-8674
1097-4172
DOI:10.1016/S0092-8674(00)81064-8