Loading…
A hybrid SVM-PSO model for forecasting monthly streamflow
The long-term streamflow forecasts are very significant in planing and reservoir operations. The streamflow forecasts have to deal with a complex and highly nonlinear data patterns. This study employs support vector machines (SVMs) in predicting monthly streamflows. SVMs are proved to be a good tool...
Saved in:
Published in: | Neural computing & applications 2014-05, Vol.24 (6), p.1381-1389 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The long-term streamflow forecasts are very significant in planing and reservoir operations. The streamflow forecasts have to deal with a complex and highly nonlinear data patterns. This study employs support vector machines (SVMs) in predicting monthly streamflows. SVMs are proved to be a good tool for forecasting the nonlinear time series. But the performance of the SVM depends solely upon the appropriate choice of parameters. Hence, particle swarm optimization technique is employed in tuning SVM parameters. The proposed SVM-PSO model is used in forecasting the streamflow values of Swan River near Bigfork and St. Regis River near Clark Fork of Montana, United States. Further SVM model with various input structures is constructed, and the best structure is determined using various statistical performances. Later, the performance of the SVM model is compared with the autoregressive moving average model (ARMA) and artificial neural networks (ANN's). The results indicate that SVM could be a better alternative for predicting monthly streamflows as it provides a high degree of accuracy and reliability. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-013-1341-y |