Loading…

A hybrid SVM-PSO model for forecasting monthly streamflow

The long-term streamflow forecasts are very significant in planing and reservoir operations. The streamflow forecasts have to deal with a complex and highly nonlinear data patterns. This study employs support vector machines (SVMs) in predicting monthly streamflows. SVMs are proved to be a good tool...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2014-05, Vol.24 (6), p.1381-1389
Main Authors: Sudheer, Ch, Maheswaran, R., Panigrahi, B. K., Mathur, Shashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-26f93c33280acb09e29daf35e6a5f73d0534bd9caf7d4922bfce251ef524568c3
cites cdi_FETCH-LOGICAL-c351t-26f93c33280acb09e29daf35e6a5f73d0534bd9caf7d4922bfce251ef524568c3
container_end_page 1389
container_issue 6
container_start_page 1381
container_title Neural computing & applications
container_volume 24
creator Sudheer, Ch
Maheswaran, R.
Panigrahi, B. K.
Mathur, Shashi
description The long-term streamflow forecasts are very significant in planing and reservoir operations. The streamflow forecasts have to deal with a complex and highly nonlinear data patterns. This study employs support vector machines (SVMs) in predicting monthly streamflows. SVMs are proved to be a good tool for forecasting the nonlinear time series. But the performance of the SVM depends solely upon the appropriate choice of parameters. Hence, particle swarm optimization technique is employed in tuning SVM parameters. The proposed SVM-PSO model is used in forecasting the streamflow values of Swan River near Bigfork and St. Regis River near Clark Fork of Montana, United States. Further SVM model with various input structures is constructed, and the best structure is determined using various statistical performances. Later, the performance of the SVM model is compared with the autoregressive moving average model (ARMA) and artificial neural networks (ANN's). The results indicate that SVM could be a better alternative for predicting monthly streamflows as it provides a high degree of accuracy and reliability.
doi_str_mv 10.1007/s00521-013-1341-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705054384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705054384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-26f93c33280acb09e29daf35e6a5f73d0534bd9caf7d4922bfce251ef524568c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN1sBDfRm9fMZFmKVqFSoeo2ZDJJO2UeNZki8-9NmeLSxeXCueccuB9CtwQeCED2GAAEJRgIw4RxgoczNCGcMcxA5OdoAjKKkHJ2ia5C2AEAT3MxQXKWbIfCV2Wy_nrD7-tV0nSlrRPX-eNYo0NftZuotv22HpLQe6sbV3c_1-jC6TrYm9Oeos_np4_5C16uFq_z2RIbJkiPaeokM4zRHLQpQFoqS-2YsKkWLmMlCMaLUhrtspJLSgtnLBXEOkG5SHPDpuh-7N377vtgQ6-aKhhb17q13SEokoEAwVnOo5WMVuO7ELx1au-rRvtBEVBHTGrEpCImdcSkhpi5O9XrYHTtvG5NFf6CNBeZzLiIPjr6Qjy1G-vVrjv4Nn7-T_kvGRl28g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705054384</pqid></control><display><type>article</type><title>A hybrid SVM-PSO model for forecasting monthly streamflow</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Sudheer, Ch ; Maheswaran, R. ; Panigrahi, B. K. ; Mathur, Shashi</creator><creatorcontrib>Sudheer, Ch ; Maheswaran, R. ; Panigrahi, B. K. ; Mathur, Shashi</creatorcontrib><description>The long-term streamflow forecasts are very significant in planing and reservoir operations. The streamflow forecasts have to deal with a complex and highly nonlinear data patterns. This study employs support vector machines (SVMs) in predicting monthly streamflows. SVMs are proved to be a good tool for forecasting the nonlinear time series. But the performance of the SVM depends solely upon the appropriate choice of parameters. Hence, particle swarm optimization technique is employed in tuning SVM parameters. The proposed SVM-PSO model is used in forecasting the streamflow values of Swan River near Bigfork and St. Regis River near Clark Fork of Montana, United States. Further SVM model with various input structures is constructed, and the best structure is determined using various statistical performances. Later, the performance of the SVM model is compared with the autoregressive moving average model (ARMA) and artificial neural networks (ANN's). The results indicate that SVM could be a better alternative for predicting monthly streamflows as it provides a high degree of accuracy and reliability.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-013-1341-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Applied sciences ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Data Mining and Knowledge Discovery ; Data processing. List processing. Character string processing ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrology ; Hydrology. Hydrogeology ; Image Processing and Computer Vision ; Inference from stochastic processes; time series analysis ; Mathematics ; Memory organisation. Data processing ; Original Article ; Probability and statistics ; Probability and Statistics in Computer Science ; Sciences and techniques of general use ; Software ; Statistics</subject><ispartof>Neural computing &amp; applications, 2014-05, Vol.24 (6), p.1381-1389</ispartof><rights>Springer-Verlag London 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-26f93c33280acb09e29daf35e6a5f73d0534bd9caf7d4922bfce251ef524568c3</citedby><cites>FETCH-LOGICAL-c351t-26f93c33280acb09e29daf35e6a5f73d0534bd9caf7d4922bfce251ef524568c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28579745$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sudheer, Ch</creatorcontrib><creatorcontrib>Maheswaran, R.</creatorcontrib><creatorcontrib>Panigrahi, B. K.</creatorcontrib><creatorcontrib>Mathur, Shashi</creatorcontrib><title>A hybrid SVM-PSO model for forecasting monthly streamflow</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The long-term streamflow forecasts are very significant in planing and reservoir operations. The streamflow forecasts have to deal with a complex and highly nonlinear data patterns. This study employs support vector machines (SVMs) in predicting monthly streamflows. SVMs are proved to be a good tool for forecasting the nonlinear time series. But the performance of the SVM depends solely upon the appropriate choice of parameters. Hence, particle swarm optimization technique is employed in tuning SVM parameters. The proposed SVM-PSO model is used in forecasting the streamflow values of Swan River near Bigfork and St. Regis River near Clark Fork of Montana, United States. Further SVM model with various input structures is constructed, and the best structure is determined using various statistical performances. Later, the performance of the SVM model is compared with the autoregressive moving average model (ARMA) and artificial neural networks (ANN's). The results indicate that SVM could be a better alternative for predicting monthly streamflows as it provides a high degree of accuracy and reliability.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data processing. List processing. Character string processing</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Image Processing and Computer Vision</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Memory organisation. Data processing</subject><subject>Original Article</subject><subject>Probability and statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wN1sBDfRm9fMZFmKVqFSoeo2ZDJJO2UeNZki8-9NmeLSxeXCueccuB9CtwQeCED2GAAEJRgIw4RxgoczNCGcMcxA5OdoAjKKkHJ2ia5C2AEAT3MxQXKWbIfCV2Wy_nrD7-tV0nSlrRPX-eNYo0NftZuotv22HpLQe6sbV3c_1-jC6TrYm9Oeos_np4_5C16uFq_z2RIbJkiPaeokM4zRHLQpQFoqS-2YsKkWLmMlCMaLUhrtspJLSgtnLBXEOkG5SHPDpuh-7N377vtgQ6-aKhhb17q13SEokoEAwVnOo5WMVuO7ELx1au-rRvtBEVBHTGrEpCImdcSkhpi5O9XrYHTtvG5NFf6CNBeZzLiIPjr6Qjy1G-vVrjv4Nn7-T_kvGRl28g</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Sudheer, Ch</creator><creator>Maheswaran, R.</creator><creator>Panigrahi, B. K.</creator><creator>Mathur, Shashi</creator><general>Springer London</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20140501</creationdate><title>A hybrid SVM-PSO model for forecasting monthly streamflow</title><author>Sudheer, Ch ; Maheswaran, R. ; Panigrahi, B. K. ; Mathur, Shashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-26f93c33280acb09e29daf35e6a5f73d0534bd9caf7d4922bfce251ef524568c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data processing. List processing. Character string processing</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Image Processing and Computer Vision</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Memory organisation. Data processing</topic><topic>Original Article</topic><topic>Probability and statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudheer, Ch</creatorcontrib><creatorcontrib>Maheswaran, R.</creatorcontrib><creatorcontrib>Panigrahi, B. K.</creatorcontrib><creatorcontrib>Mathur, Shashi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudheer, Ch</au><au>Maheswaran, R.</au><au>Panigrahi, B. K.</au><au>Mathur, Shashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid SVM-PSO model for forecasting monthly streamflow</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>24</volume><issue>6</issue><spage>1381</spage><epage>1389</epage><pages>1381-1389</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The long-term streamflow forecasts are very significant in planing and reservoir operations. The streamflow forecasts have to deal with a complex and highly nonlinear data patterns. This study employs support vector machines (SVMs) in predicting monthly streamflows. SVMs are proved to be a good tool for forecasting the nonlinear time series. But the performance of the SVM depends solely upon the appropriate choice of parameters. Hence, particle swarm optimization technique is employed in tuning SVM parameters. The proposed SVM-PSO model is used in forecasting the streamflow values of Swan River near Bigfork and St. Regis River near Clark Fork of Montana, United States. Further SVM model with various input structures is constructed, and the best structure is determined using various statistical performances. Later, the performance of the SVM model is compared with the autoregressive moving average model (ARMA) and artificial neural networks (ANN's). The results indicate that SVM could be a better alternative for predicting monthly streamflows as it provides a high degree of accuracy and reliability.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-013-1341-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2014-05, Vol.24 (6), p.1381-1389
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_miscellaneous_1705054384
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Applied sciences
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science
control theory
systems
Connectionism. Neural networks
Data Mining and Knowledge Discovery
Data processing. List processing. Character string processing
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hydrology
Hydrology. Hydrogeology
Image Processing and Computer Vision
Inference from stochastic processes
time series analysis
Mathematics
Memory organisation. Data processing
Original Article
Probability and statistics
Probability and Statistics in Computer Science
Sciences and techniques of general use
Software
Statistics
title A hybrid SVM-PSO model for forecasting monthly streamflow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20SVM-PSO%20model%20for%20forecasting%20monthly%20streamflow&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Sudheer,%20Ch&rft.date=2014-05-01&rft.volume=24&rft.issue=6&rft.spage=1381&rft.epage=1389&rft.pages=1381-1389&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-013-1341-y&rft_dat=%3Cproquest_cross%3E1705054384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-26f93c33280acb09e29daf35e6a5f73d0534bd9caf7d4922bfce251ef524568c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1705054384&rft_id=info:pmid/&rfr_iscdi=true