Loading…

T lymphocyte regulation by mevalonate metabolism

Whereas resting T cells, which have low metabolic requirements, use oxidative phosphorylation (OXPHOS) to maximize their generation of ATP, activated T cells, similar to tumor cells, shift metabolic activity to aerobic glycolysis, which also fuels mevalonate metabolism. Both sterol and nonsterol der...

Full description

Saved in:
Bibliographic Details
Published in:Science signaling 2015-03, Vol.8 (370), p.re4-re4
Main Authors: Thurnher, Martin, Gruenbacher, Georg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Whereas resting T cells, which have low metabolic requirements, use oxidative phosphorylation (OXPHOS) to maximize their generation of ATP, activated T cells, similar to tumor cells, shift metabolic activity to aerobic glycolysis, which also fuels mevalonate metabolism. Both sterol and nonsterol derivatives of mevalonate affect T cell function. The intracellular availability of sterols, which is dynamically regulated by different classes of transcription factors, represents a metabolic checkpoint that modulates T cell responses. The electron carrier ubiquinone, which is modified with an isoprenoid membrane anchor, plays a pivotal role in OXPHOS, which supports the proliferation of T cells. Isoprenylation also mediates the plasma membrane attachment of the Ras, Rho, and Rab guanosine triphosphatases, which are involved in T cell immunological synapse formation, migration, proliferation, and cytotoxic effector responses. Finally, multiple phosphorylated mevalonate derivatives can act as danger signals for innate-like γδ T cells, thus contributing to the immune surveillance of stress, pathogens, and tumors. We highlight the importance of the mevalonate pathway in the metabolic reprogramming of effector and regulatory T cells.
ISSN:1945-0877
1937-9145
DOI:10.1126/scisignal.2005970