Loading…
Untargeted urine metabolomics reveals a biosignature for muscle respiratory chain deficiencies
Mitochondrial diseases are a heterogeneous group of disorders characterised by impaired mitochondrial oxidative phosphorylation system. Most often for mitochondrial disease, where no metabolic diagnostic biomarkers exist, a deficiency is diagnosed after analysing the respiratory chain enzymes (compl...
Saved in:
Published in: | Metabolomics 2015-02, Vol.11 (1), p.111-121 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mitochondrial diseases are a heterogeneous group of disorders characterised by impaired mitochondrial oxidative phosphorylation system. Most often for mitochondrial disease, where no metabolic diagnostic biomarkers exist, a deficiency is diagnosed after analysing the respiratory chain enzymes (complexes I-IV) in affected tissues or by identifying one of an ever expanding number of DNA mutations. This presents a great challenge to identify cases to undergo the invasive diagnostic procedures required. An untargeted liquid chromatography mass spectrometry metabolomics approach was used to search for a metabolic biosignature that can distinguish respiratory chain deficient (RCD) patients from clinical controls (CC). A cohort of 37 ethnically diverse cases was used. Sample preparation, liquid chromatography time-of-flight mass spectrometry methods and data processing methods were standardised. Furthermore the developed methodology used reverse phase chromatography in conjunction with positive electrospray ionisation and hydrophilic interaction chromatography with negative electrospray ionisation. Urine samples of 37 patients representing two different experimental groups were analysed. The two experimental groups comprised of patients with confirmed RCDs and CC. After a variety of data mining steps and statistical analyses a list of 12 features were compiled with the ability to distinguish between patients with RCDs and CC. Although the features of the biosignature needs to be identified and the biosignature validated, this study demonstrates the value of untargeted metabolomics to identify a metabolic biosignature to possibly be applied in the selection criteria for RCDs. |
---|---|
ISSN: | 1573-3882 1573-3890 |
DOI: | 10.1007/s11306-014-0675-5 |