Loading…
Quantum coherence in momentum space of light-matter condensates
We show that the use of momentum-space optical interferometry, which avoids any spatial overlap between two parts of a macroscopic quantum state, presents a unique way to study coherence phenomena in polariton condensates. In this way, we address the longstanding question in quantum mechanics: "...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-08, Vol.90 (8), Article 081407 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that the use of momentum-space optical interferometry, which avoids any spatial overlap between two parts of a macroscopic quantum state, presents a unique way to study coherence phenomena in polariton condensates. In this way, we address the longstanding question in quantum mechanics: "Do two components of a condensate, which have never seen each other, possess a definitive phase?" [P. W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin Cummings, Menlo Park, CA, 1984)]. A positive answer to this question is experimentally obtained here for light-matter condensates, created under precise symmetry conditions, in semiconductor microcavities, taking advantage of the direct relation between the angle of emission and the in-plane momentum of polaritons. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.90.081407 |