Loading…
LES-CMC Simulations of Different Auto-ignition Regimes of Hydrogen in a Hot Turbulent Air Co-flow
Large-Eddy Simulation (LES) results in combination with first-order Conditional Moment Closure (CMC) are presented for a hydrogen jet, diluted with nitrogen, issued into a turbulent co-flowing hot air stream. The fuel mixes with the co-flow air, ignites and forms a lifted-like flame. Global trends i...
Saved in:
Published in: | Flow, turbulence and combustion turbulence and combustion, 2013-04, Vol.90 (3), p.583-604 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large-Eddy Simulation (LES) results in combination with first-order Conditional Moment Closure (CMC) are presented for a hydrogen jet, diluted with nitrogen, issued into a turbulent co-flowing hot air stream. The fuel mixes with the co-flow air, ignites and forms a lifted-like flame. Global trends in the experimental observations are in general well reproduced: the auto-ignition length decreases with increase in co-flow temperature and increases with increase in co-flow velocity. In the experiments, the co-flow temperature was varied, so that different auto-ignition regimes, including low Damköhler number situations, were obtained (no ignition, random spots, flashback and lifted flame). All regimes are recovered in the simulations. Auto-ignition is found to be the stabilizing mechanism. The impact of different detailed chemistry mechanisms on the auto-ignition predictions is discussed. With increasing air temperature, the differences between the mechanisms considered diminish. The evolution of temperature, H
2
O, H, HO
2
and OH from inert to burning conditions is discussed in mixture fraction space. |
---|---|
ISSN: | 1386-6184 1573-1987 |
DOI: | 10.1007/s10494-013-9443-2 |