Loading…
Microbial sensor for new generation cephalosporins based in a protein-engineered beta-lactamase
A protein-engineered beta-lactamase, constructed by site-directed mutagenesis in Escherichia coli (E104M/G238S), and having broadened specificity, was able to degrade cephalosporins of first, second, and third generations. Manipulations of culture conditions allowed an increase in beta-lactamase spe...
Saved in:
Published in: | Applied biochemistry and biotechnology 1998-05, Vol.73 (2/3), p.243-256 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A protein-engineered beta-lactamase, constructed by site-directed mutagenesis in Escherichia coli (E104M/G238S), and having broadened specificity, was able to degrade cephalosporins of first, second, and third generations. Manipulations of culture conditions allowed an increase in beta-lactamase specific activity by up to twofold. The resultant bacteria were used to construct an immersable whole-cell biosensor for the detection of new-generation cephalosporins. Cells were immobilized on agar membranes, which in turn were attached to the surface of a flat pH electrode, thus constituting a biosensor based on the detection of pH changes. The sensor was able to detect second- and third-generation cephalosporins: cefamandole (0.4.4 mM), cefotaxime (0.4-3.5 mM), and cefoperazone (0.3-1.85 mM). Response times were between 3.5 and 11 min, depending on the kind of cephalosporin tested. The biosensor was stable for at least 7 d, time during which up to 100 tests were performed. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/BF02785659 |