Loading…

Glucocorticoid Receptor Transcriptional Activity Determined by Spacing of Receptor and Nonreceptor DNA Sites

The glucocorticoid receptor (GR) displays distinct modes of regulation when bound at glucocorticoid response elements (GREs) bearing different binding sequences and arrangements of binding sites. For example, it has been shown to activate transcription synergistically with itself or with other regul...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1998-11, Vol.273 (46), p.30081-30085
Main Authors: Pearce, David, Matsui, William, Miner, Jeffrey N., Yamamoto, Keith R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The glucocorticoid receptor (GR) displays distinct modes of regulation when bound at glucocorticoid response elements (GREs) bearing different binding sequences and arrangements of binding sites. For example, it has been shown to activate transcription synergistically with itself or with other regulatory factors, such as AP1, when bound to a consensus palindromic element or “simple GRE” that is multimerized or linked tightly with an AP1 site. In contrast, at certain “composite GREs” GR and AP1 bind to nonconsensus sequences, and GR either activates or represses depending on the subunit composition of AP1. To uncouple the contributions to regulatory behavior of binding sequences and binding element arrangements, we examined GR action at “paired elements,” combinations of a simple GRE and a consensus AP1 site, separated by different distances. We found that GR synergized with either c-Jun or c-Jun-c-Fos at paired elements with GRE-AP1 site separations of ≥26 base pairs. In contrast, paired elements with separations of 14–18 base pairs mimicked the composite GRE, i.e. GR synergized with c-Jun and repressed c-Jun-c-Fos. In DNA binding studies, GR and AP1 cooccupied the paired elements. We conclude that the arrangement of binding sites within a compound response element can be a major determinant of regulatory factor action.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.46.30081