Loading…
Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer
A novel algorithm for performing configuration interaction (CI) calculations using non-orthogonal orbitals is introduced. In the new algorithm, the explicit calculation of the Hamiltonian matrix is replaced by the direct evaluation of the Hamiltonian matrix times a vector, which allows expressing th...
Saved in:
Published in: | The Journal of chemical physics 2015-09, Vol.143 (11), p.114102-114102 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel algorithm for performing configuration interaction (CI) calculations using non-orthogonal orbitals is introduced. In the new algorithm, the explicit calculation of the Hamiltonian matrix is replaced by the direct evaluation of the Hamiltonian matrix times a vector, which allows expressing the CI-vector in a bi-orthonormal basis, thereby drastically reducing the computational complexity. A new non-orthogonal orbital optimization method that employs exponential mappings is also described. To allow non-orthogonal transformations of the orbitals, the standard exponential mapping using anti-symmetric operators is supplemented with an exponential mapping based on a symmetric operator in the active orbital space. Expressions are obtained for the orbital gradient and Hessian, which involve the calculation of at most two-body density matrices, thereby avoiding the time-consuming calculation of the three- and four-body density matrices of the previous approaches. An approach that completely avoids the calculation of any four-body terms with limited degradation of convergence is also devised. The novel methods for non-orthogonal configuration interaction and orbital optimization are applied to the chromium dimer and trimer. For internuclear distances that are typical for chromium clusters, it is shown that a reference configuration consisting of optimized singly occupied active orbitals is sufficient to give a potential curve that is in qualitative agreement with complete active space self-consistent field (CASSCF) calculations containing more than 500 Ă— 10(6) determinants. To obtain a potential curve that deviates from the CASSCF curve by less than 1 mHartree, it is sufficient to add single and double excitations out from the reference configuration. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4929724 |