Loading…
Decoy mRNAs reduce β-amyloid precursor protein mRNA in neuronal cells
Overproduction of amyloid precursor protein (APP) and β-amyloid likely contribute to neurodegeneration in Alzheimer's disease (AD). In an effort to understand neuronal APP gene regulation, we identified a 52 base element (52sce) immediately downstream from the stop codon that stabilizes APP mRN...
Saved in:
Published in: | Neurobiology of aging 2006-06, Vol.27 (6), p.787-796 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Overproduction of amyloid precursor protein (APP) and β-amyloid likely contribute to neurodegeneration in Alzheimer's disease (AD). In an effort to understand neuronal APP gene regulation, we identified a 52 base element (52sce) immediately downstream from the stop codon that stabilizes APP mRNA. Deletion of this domain drastically destabilized APP mRNAs and reduced APP synthesis in vitro. Chimeric globin-APP mRNAs containing the globin coding sequence fused to the entire APP 3′-UTR, showed regulation similar to full-length APP mRNA. A variety of cytoplasmic lysates contain 52sce RNA binding activity, suggesting
cis–
trans interactions regulate the element's functionality. Finally, the overexpression of chimeric mRNAs, containing the GFP coding sequence and APP 3′-UTR, dramatically reduced endogenous APP steady-state levels in SH-SY5Y neuroblastoma cells and suggests a novel approach to reduce the amyloid burden in AD patients. |
---|---|
ISSN: | 0197-4580 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2006.03.003 |