Loading…

Darbishire expands his vision of heredity from Mendelian genetics to inherited memory

The British biologist A.D. Darbishire (1879–1915) responded to the rediscovery in 1900 of Mendel's theory of heredity by testing it experimentally, first in Oxford, then in Manchester and London. He summarised his conclusions in a textbook ‘Breeding and the Mendelian Discovery' (1911), in...

Full description

Saved in:
Bibliographic Details
Published in:Studies in history and philosophy of science. Part C, Studies in history and philosophy of biological and biomedical sciences Studies in history and philosophy of biological and biomedical sciences, 2015-10, Vol.53, p.16-39
Main Author: Wood, Roger J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The British biologist A.D. Darbishire (1879–1915) responded to the rediscovery in 1900 of Mendel's theory of heredity by testing it experimentally, first in Oxford, then in Manchester and London. He summarised his conclusions in a textbook ‘Breeding and the Mendelian Discovery' (1911), in which he questioned whether Mendelism alone could explain all aspects of practical breeding experience. Already he had begun to think about an alternative theory to give greater emphasis to the widely held conviction among breeders regarding the inheritance of characteristics acquired during an individual's life. Redefining heredity in terms of a germ-plasm based biological memory, he used vocabulary drawn partly from sources outside conventional science, including the metaphysical/vitalistic writings of Samuel Butler and Henri Bergson. An evolving hereditary memory fitted well with the conception of breeding as a creative art aimed at greater economic efficiency. For evolution beyond human control he proposed a self-modifying process, claiming it to surpass in efficiency the chancy mechanism of natural selection proposed by Darwin. From his writings, including early chapters of an unfinished book entitled ‘An Introduction to a Biology’, we consider how he reached these concepts and how they relate to later advances in understanding the genome and the genetic programme.
ISSN:1369-8486
1879-2499
DOI:10.1016/j.shpsc.2015.06.001