Loading…

Sources of Reactive Oxygen Species Production in Excitotoxin-Stimulated Cerebellar Granule Cells

Reactive oxygen species (ROS) production in rat cerebellar granule cells in the presence of the excitotoxinsN-methyl-d-aspartate (NMDA) and kainic acid (KA) and by the protein kinase C activator phorbol myristate acetate (PMA) was Ca2+-dependent and resulted in decreased cell viability. Exposure of...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 1999-03, Vol.256 (2), p.320-324
Main Authors: Boldyrev, Alexander A., Carpenter, David O., Huentelman, Matthew J., Peters, Craig M., Johnson, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reactive oxygen species (ROS) production in rat cerebellar granule cells in the presence of the excitotoxinsN-methyl-d-aspartate (NMDA) and kainic acid (KA) and by the protein kinase C activator phorbol myristate acetate (PMA) was Ca2+-dependent and resulted in decreased cell viability. Exposure of stimulated cells to rotenone (a respiratory chain inhibitor) did not decrease ROS levels and did not affect short-term cell viability. In cells stimulated by NMDA and KA, exposure to indomethacin (a cyclooxygenase inhibitor) and nialamide (a monoamine oxidase inhibitor) caused a decrease in ROS levels and increased cell viability occurred in NMDA-treated cells. In contrast, PMA-stimulated neurons did not show decreased ROS levels when exposed to indomethacin and nialamide. These studies suggest that there is a multiplicity of routes for Ca2+-dependent ROS production in neurons but that ROS generation by cyclooxygenase and monoamine oxidase is not controlled by protein kinase C.
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.1999.0325