Loading…

Semiparametric single-index panel data models with cross-sectional dependence

In this paper, we consider a semiparametric single-index panel data model with cross-sectional dependence and stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture unobservable heterogeneity. Under a general spatial error dependence structure, we then establ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2015-09, Vol.188 (1), p.301-312
Main Authors: Dong, Chaohua, Gao, Jiti, Peng, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider a semiparametric single-index panel data model with cross-sectional dependence and stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture unobservable heterogeneity. Under a general spatial error dependence structure, we then establish some consistent closed-form estimates for both the unknown parameters and the link function for the case where both cross-sectional dimension (N) and temporal dimension (T) go to infinity. Rates of convergence and asymptotic normality are established for the proposed estimates. Our experience suggests that the proposed estimation method is simple and thus attractive for finite-sample studies and empirical implementations. Moreover, both the finite-sample performance and the empirical applications show that the proposed estimation method works well when the cross-sectional dependence exists in the data set.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2015.06.001