Loading…

Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms a...

Full description

Saved in:
Bibliographic Details
Published in:Reports on progress in physics 2013-03, Vol.76 (3), p.034601-034601
Main Authors: Ho yst, R, Litniewski, M, Jakubczyk, D, Kolwas, K, Kolwas, M, Kowalski, K, Migacz, S, Palesa, S, Zientara, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid-vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid-vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417-28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid-vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P1/(a + P2), where a is the radius of the evaporating droplet, t is time and P1 and P2 are two parameters. P1 = −λΔT/(qeffρL), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet and the vapour far from the interface, qeff is the enthalpy of evaporation per unit mass and ρL is the liquid density. The P2 parameter is the kinetic correction proportional to the evaporation coefficient. P2 = 0 only in the absence of temperature discontinuity at the interface. We discuss various models and problems in the determination of the evaporation coefficient and discuss evaporation scenarios in the case of single- and multi-component systems.
ISSN:0034-4885
1361-6633
DOI:10.1088/0034-4885/76/3/034601