Loading…

Modelling uniformly porous facades to predict dwelling infiltration rates

It is important to limit dwelling infiltration to reduce energy demand and help meet national climate change commitments while concurrently providing sufficient ventilation to deliver adequate indoor air quality. DOMVENT3D is a model of infiltration and exfiltration that assumes a linear pressure di...

Full description

Saved in:
Bibliographic Details
Published in:Building services engineering research & technology 2014-07, Vol.35 (4), p.408-416
Main Authors: Jones, BM, Lowe, RJ, Davies, M, Chalabi, Z, Das, P, Ridley, I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is important to limit dwelling infiltration to reduce energy demand and help meet national climate change commitments while concurrently providing sufficient ventilation to deliver adequate indoor air quality. DOMVENT3D is a model of infiltration and exfiltration that assumes a linear pressure distribution over any number of uniformly porous facades and integrates the airflow rate in the vertical plane to predict the theoretically correct airflow rate through them. DOMVENT3D is a new development of an existing two-dimensional model of infiltration that provides more opportunities for investigating a greater number of dwellings than was previously possible. Initial testing suggests that DOMVENT3D is mathematically robust and is suitable for modelling a wide variety of dwelling types and geometries to assist engineers and policy makers. Practical application: The modern building services engineer may be required to model airflow networks in a building to balance the conflicting needs of energy consumption reduction and occupant health. Limiting exfiltration is one method of reducing heat losses from a building and so there is a need to model it accurately. This article presents a new model of infiltration and exfiltration through a uniformly porous facade that can be incorporated within advanced complex airflow network tools or applied using a simple spreadsheet.
ISSN:0143-6244
1477-0849
DOI:10.1177/0143624413499354