Loading…
Morphological Phylogenetics in the Genomic Age
Evolutionary trees underpin virtually all of biology, and the wealth of new genomic data has enabled us to reconstruct them with increasing detail and confidence. While phenotypic (typically morphological) traits are becoming less important in reconstructing evolutionary trees, they still serve vita...
Saved in:
Published in: | Current biology 2015-10, Vol.25 (19), p.R922-R929 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Evolutionary trees underpin virtually all of biology, and the wealth of new genomic data has enabled us to reconstruct them with increasing detail and confidence. While phenotypic (typically morphological) traits are becoming less important in reconstructing evolutionary trees, they still serve vital and unique roles in phylogenetics, even for living taxa for which vast amounts of genetic information are available. Morphology remains a powerful independent source of evidence for testing molecular clades, and — through fossil phenotypes — the primary means for time-scaling phylogenies. Morphological phylogenetics is therefore vital for transforming undated molecular topologies into dated evolutionary trees. However, if morphology is to be employed to its full potential, biologists need to start scrutinising phenotypes in a more objective fashion, models of phenotypic evolution need to be improved, and approaches for analysing phenotypic traits and fossils together with genomic data need to be refined.
Lee and Palci review how phenotypic traits and fossils remain essential for constructing the dated phylogenetic trees that underpin much of modern biology. |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2015.07.009 |