Loading…

Marginal and internal adaptation of milled cobalt-chromium copings

Abstract Statement of problem The application of computer-aided design and computer-aided manufacturing (CAD/CAM) systems to produce complete coverage restorations with different materials continues to increase. To date, insufficient information is available regarding the adaptation of recently intr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of prosthetic dentistry 2015-11, Vol.114 (5), p.680-685
Main Authors: Kane, Lisa M., DDS, MS, Chronaios, Dimitrios, BDS, MS, Sierraalta, Marianella, DDS, MS, George, Furat M., BDS, MS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Statement of problem The application of computer-aided design and computer-aided manufacturing (CAD/CAM) systems to produce complete coverage restorations with different materials continues to increase. To date, insufficient information is available regarding the adaptation of recently introduced milled cobalt-chromium (Co-Cr) copings for metal ceramic restorations. Purpose The purpose of this in vitro study was to evaluate the marginal and internal fit of milled Co-Cr copings produced by CAD/CAM with 2 different marginal preparation designs. Material and methods Four master dies were developed from 2 ivorine central incisors and 2 ivorine maxillary molars, 1 of each prepared with a 0.8-mm chamfer and a 1.2-mm rounded shoulder. These 4 groups of teeth were replicated with polyvinyl siloxane and used as templates to fabricate epoxy dies (n=10) for each of the 4 groups; a total of 40 epoxy resin dies. Cobalt-chromium copings of standard thickness (0.4 mm) were fabricated for each die with CAD/CAM technology. Next, the working dies were scanned with a 5-axis laser scanner to produce a 3-dimensional model. A thin layer of low-viscosity polyvinyl siloxane material was placed inside each coping and seated on the die until the material set. Copings were removed from the dies, leaving the polyvinyl siloxane intact, and these silicone-coated dies were scanned. The software superimposed the 2 scans, and the marginal openings and internal fit were measured at multiple locations. The marginal opening was determined at 4 locations: mid-buccal (mB), mid-lingual (mL), mid-mesial (mM), and mid-distal (mD), and the mean of these 4 measurement locations was referred to as the group variable “edge.” The internal occlusal adaptation was measured at the midpoint from buccal to lingual and mesial to distal locations and referred to as mid-occlusal (mO). Means and standard deviations for edge (marginal adaptation) and mO were calculated for each of the 4 groups. A 2-sample t test was performed to detect differences among groups. A regression analysis was done to evaluate the interaction between the variables mO and edge (α=.05). Results Significantly smaller mean marginal openings ( P =.017) were observed overall for the chamfer marginal design (anterior chamfer: 61 ±41 μm; posterior chamfer: 52 ±27 μm) compared with the shoulder design (anterior shoulder 103 ±49 μm, posterior shoulder 113 ±110 μm). The anterior chamfer had a statistically significant ( P =.055) smaller
ISSN:0022-3913
1097-6841
DOI:10.1016/j.prosdent.2015.04.020