Loading…

Catalytic amine-borane dehydrogenation by a PCP-pincer palladium complex: a combined experimental and DFT analysis of the reaction mechanism

Catalytic dehydrogenation of ammonia-borane (NH(3)·BH(3), AB) and dimethylamine borane (NHMe(2)·BH(3), DMAB) by the Pd(II) complex [((tBu)PCP)Pd(H(2)O)]PF(6) [(tBu)PCP = 2,6-C(6)H(3)(CH(2)P(t)Bu(2))(2)] leads to oligomerization and formation of spent fuels of general formula cyclo-[BH(2)-NR(2)](n) (...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2013-03, Vol.42 (10), p.3533-3541
Main Authors: Rossin, Andrea, Bottari, Giovanni, Lozano-Vila, Ana M, Paneque, Margarita, Peruzzini, Maurizio, Rossi, Andrea, Zanobini, Fabrizio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Catalytic dehydrogenation of ammonia-borane (NH(3)·BH(3), AB) and dimethylamine borane (NHMe(2)·BH(3), DMAB) by the Pd(II) complex [((tBu)PCP)Pd(H(2)O)]PF(6) [(tBu)PCP = 2,6-C(6)H(3)(CH(2)P(t)Bu(2))(2)] leads to oligomerization and formation of spent fuels of general formula cyclo-[BH(2)-NR(2)](n) (n = 2,3; R = H, Me) as reaction byproducts, while one equivalent of H(2) is released per amine-borane equivalent. The processes were followed through multinuclear ((31)P, (1)H, (11)B) variable temperature NMR spectroscopy; kinetic measurements on the hydrogen production rate and the relative rate constants were also carried out. One non-hydridic intermediate could be detected at low temperature, whose chemical nature was explored through a DFT modeling of the reaction mechanism, at the M06//6-31+G(d,p) computational level. The computational output was of help to propose a reliable mechanistic picture of the process.
ISSN:1477-9226
1477-9234
DOI:10.1039/c2dt32273k