Loading…

The evolution of long bone microstructure and lifestyle in lissamphibians

The compactness profile of femoral cross-sections and body size of 105 specimens of 46 species of lissamphibians was studied to assess the effect of lifestyle (aquatic, amphibious, or terrestrial). Several tests that incorporate phylogenetic information (permutational multiple linear regression inco...

Full description

Saved in:
Bibliographic Details
Published in:Paleobiology 2004-12, Vol.30 (4), p.589-613
Main Authors: Laurin, Michel, Girondot, Marc, Loth, Marie-Madeleine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The compactness profile of femoral cross-sections and body size of 105 specimens of 46 species of lissamphibians was studied to assess the effect of lifestyle (aquatic, amphibious, or terrestrial). Several tests that incorporate phylogenetic information (permutational multiple linear regression incorporating phylogenetic distances, logistic regression using phylogenetic weighting, concentrated-changes tests) show that the return to a fully aquatic lifestyle is associated with an increase in the compactness of the femur and an increase in body size. However, amphibious taxa cannot be distinguished from terrestrial ones solely on the basis of size or compactness. Body size and compactness profile parameters of the femur exhibit a phylogenetic signal (i.e., closely related taxa tend to be more similar to each other than to distantly related taxa). Mathematical equations obtained from our data by using logistic regression with phylogenetic weighting are used to infer the lifestyle of four early stegocephalians. The results are generally congruent with prevailing paleontological interpretations, which suggests that this method could be applied to infer the lifestyle of early taxa whose lifestyle is poorly understood.
ISSN:0094-8373
1938-5331
DOI:10.1666/0094-8373(2004)030<0589:TEOLBM>2.0.CO;2