Loading…

Mismatch repair-dependent metabolism of O 6 -methylguanine-containing DNA in Xenopus laevis egg extracts

The cytotoxicity of SN1-type alkylating agents such as N-methyl-N'-nitrosourea (MNU), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or the cancer chemotherapeutics temozolomide, dacarbazine and streptozotocin has been ascribed to the persistence of O 6-methylguanine (meG) in genomic DNA. On...

Full description

Saved in:
Bibliographic Details
Published in:DNA repair 2015-04, Vol.28, p.1-7
Main Authors: Olivera Harris, Maite, Kallenberger, Lia, Artola Borán, Mariela, Enoiu, Milica, Costanzo, Vincenzo, Jiricny, Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cytotoxicity of SN1-type alkylating agents such as N-methyl-N'-nitrosourea (MNU), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or the cancer chemotherapeutics temozolomide, dacarbazine and streptozotocin has been ascribed to the persistence of O 6-methylguanine (meG) in genomic DNA. One hypothesis posits that meG toxicity is caused by futile attempts of the mismatch repair (MMR) system to process meG/C or meG/T mispairs arising during replication, while an alternative proposal suggests that the latter lesions activate DNA damage signaling, cell cycle arrest and apoptosis directly. Attempts to elucidate the molecular mechanism of meG-induced cell killing in vivo have been hampered by the fact that the above reagents induce several types of modifications in genomic DNA, which are processed by different repair pathways. In contrast, defined substrates studied in vitro did not undergo replication. We set out to re-examine this phenomenon in replication-competent Xenopus laevis egg extracts, using either phagemid substrates containing a single meG residue, or methylated sperm chromatin. Our findings provide further support for the futile cycling hypothesis.
ISSN:1568-7864
DOI:10.1016/j.dnarep.2015.01.014