Loading…

Which motor cortical region best predicts imagined movement?

In brain-computer interfacing (BCI), motor imagery is used to provide a gateway to an effector action or behavior. However, in contrast to the main functional role of the primary motor cortex (M1) in motor execution, the M1's involvement in motor imagery has been debated, while the roles of sec...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2015-06, Vol.113, p.101-110
Main Authors: Park, Chang-hyun, Chang, Won Hyuk, Lee, Minji, Kwon, Gyu Hyun, Kim, Laehyun, Kim, Sung Tae, Kim, Yun-Hee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In brain-computer interfacing (BCI), motor imagery is used to provide a gateway to an effector action or behavior. However, in contrast to the main functional role of the primary motor cortex (M1) in motor execution, the M1's involvement in motor imagery has been debated, while the roles of secondary motor areas such as the premotor cortex (PMC) and supplementary motor area (SMA) in motor imagery have been proposed. We examined which motor cortical region had the greatest predictive ability for imagined movement among the primary and secondary motor areas. For two modes of motor performance, executed movement and imagined movement, in 12 healthy subjects who performed two types of motor task, hand grasping and hand rotation, we used the multivariate Bayes method to compare predictive ability between the primary and secondary motor areas (M1, PMC, and SMA) contralateral to the moved hand. With the distributed representation of activation, executed movement was best predicted from the M1 while imagined movement from the SMA, among the three motor cortical regions, in both types of motor task. In addition, the most predictive information about the distinction between executed movement and imagined movement was contained in the M1. The greater predictive ability of the SMA for imagined movement suggests its functional role that could be applied to motor imagery-based BCI. •Bayesian decoding enabled to compare predictive ability of motor cortical regions.•Cortical regions exhibited distributed patterns of activation in motor performance.•Executed movement was best predicted from the M1 and imagined movement from the SMA.•Predictive ability of the SMA for imagined movement suggests implications for BCI.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2015.03.033