Loading…
How Does Solar Attenuation Depth Affect the Ocean Mixed Layer? Water Turbidity and Atmospheric Forcing Impacts on the Simulation of Seasonal Mixed Layer Variability in the Turbid Black Sea
A fine-resolution (≈3.2 km) Hybrid Coordinate Ocean Model (HYCOM) is used to investigate the impact of solar radiation attenuation with depth on the predictions of monthly mean sea surface height (SSH), mixed layer depth (MLD), buoyancy and heat fluxes, and near-sea surface circulation as well. The...
Saved in:
Published in: | Journal of climate 2005-02, Vol.18 (3), p.389-409 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A fine-resolution (≈3.2 km) Hybrid Coordinate Ocean Model (HYCOM) is used to investigate the impact of solar radiation attenuation with depth on the predictions of monthly mean sea surface height (SSH), mixed layer depth (MLD), buoyancy and heat fluxes, and near-sea surface circulation as well. The model uses spatially and temporally varying attenuation of photosynthetically available radiation (k
PAR) climatologies as processed from the remotely sensed Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) to take water turbidity into account in the Black Sea. An examination of thek
PARclimatology reveals a strong seasonal cycle in the water turbidity, with a basin-averaged annual climatological mean value of 0.19 m−1over the Black Sea. Climatologically forced HYCOM simulations demonstrate that shortwave radiation below the mixed layer can be quite different based on the water turbidity, thereby affecting prediction of upper-ocean quantities in the Black Sea. The clear water constant solar attenuation depth assumption results in relatively deeper MLD (e.g., ≈+15 m in winter) in comparison to standard simulations due to the unrealistically large amount of shortwave radiation below the mixed layer, up to 100 W m−2during April to October. Such unrealistic sub–mixed layer heating causes weaker stratification at the base of the mixed layer. The buoyancy gain associated with high solar heating in summer effectively stabilizes the upper ocean producing shallow mixed layers and elevated SSH over the most of the Black Sea. In particular, the increased stability resulting from the water turbidity reduces vertical mixing in the upper ocean and causes changes in surface-layer currents, especially in the easternmost part of the Black Sea. Monthly mean SSH anomalies from the climatologically forced HYCOM simulations were evaluated against a monthly mean SSH anomaly climatology, which was constructed using satellite altimeter data from TOPEX/Poseidon (T/P),GeosatFollow-On (GFO), and theEarth Remote Sensing Satellite-2(ERS-2) over 1993–2002. Model–data comparisons show that the basin-averaged root-mean-square (rms) difference is ≈4 cm between the satellite-based SSH climatology and that obtained from HYCOM simulations using spatial and temporalk
PARfields. In contrast, when all solar radiation is absorbed at the sea surface or clear water constant solar attenuation depth values of 16.7 m are used in the model simulations, the basin-averaged SSH rms difference with respect to th |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/JCLI-3159.1 |