Loading…
Sedimentary facies and evolution in the Qiantang River incised valley, eastern China
This paper deals with the sedimentary facies and evolution of the Qiantang River (QR) estuary, and the characteristics and formation of the incised valley sequences and the related shallow biogenic gas reservoir, on the basis of analysis of over 500 cores. The result shows that, since the last glaci...
Saved in:
Published in: | Marine geology 2005-09, Vol.219 (4), p.235-259 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the sedimentary facies and evolution of the Qiantang River (QR) estuary, and the characteristics and formation of the incised valley sequences and the related shallow biogenic gas reservoir, on the basis of analysis of over 500 cores.
The result shows that, since the last glaciation, the Late Quaternary formation of the QR estuary area underwent three stages: (1) deep-cutting stage; (2) rapid-filling stage; and (3) burial stage. The fall of global sea level during the last glacial maximum enhanced the fluvial gradient and river cutting, resulting in the formation of the large-scale QR and Taihu incised valleys, with the interfluve being exposed to air on both flanks of the incised valley. Fluvial terraces at the elevations are present near the present QR estuarine mouth, corresponding to 60–70, 90–100 and 115–125 m burial depths. The valleys were filled rapidly with fluvial sediments during the post-glacial period; with the rise of sea level, the river mouth migrated to landward, and backwater and retrogressive aggradation was enhanced. The QR and Taihu incised valleys are associated with an early filling and transgressive channel-infilling sequence formation, and a late filling and transgressive floodplain-estuary formation. Subsequently, the QR valley was buried under estuarine-marine and estuarine sand bar sediments. From bottom to top, the incised valley successions can be grouped into four sedimentary facies: river channel, floodplain-estuary, estuary-shallow marine, and estuary sand bar.
The thickness of the river channel-infilling deposits is controlled mainly by base level rising, backwater, retrogressive aggradation and neotectonism. Further, localized thickening took place where deeper scour pools were present in the incised valley or fluvial terraces were formed during the fall of elative sea level.
During the deposition of the floodplain-estuary facies, the conditions of sea level rise, tidal regime, sediment supply and accommodation space were suitable for the development of a tidal ridge system; the sand lenses associated with this facies may represent a tidal ridge system in the incised valley. At the later stage when the estuarine sand bars were formed, the sedimentary conditions were no longer favourable, resulting in absence of sand ridge deposits. Biogenic gas is stored in the floodplain-estuary sand lenses of the incised valleys. The Changjiang River provides the major sediment supply for the QR estuary sand bar, a |
---|---|
ISSN: | 0025-3227 1872-6151 |
DOI: | 10.1016/j.margeo.2005.06.009 |