Loading…

Extraordinary Changes in the Electronic Structure and Properties of CdS and ZnS by Anionic Substitution: Cosubstitution of P and Cl in Place of S

Unlike cation substitution, anion substitution in inorganic materials such as metal oxides and sulfides would be expected to bring about major changes in the electronic structure and properties. In order to explore this important aspect, we have carried out first‐principles DFT calculations to deter...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2015-07, Vol.127 (28), p.8267-8271
Main Authors: Kouser, Summayya, Lingampalli, S. R., Chithaiah, P., Roy, Anand, Saha, Sujoy, Waghmare, Umesh V., Rao, C. N. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unlike cation substitution, anion substitution in inorganic materials such as metal oxides and sulfides would be expected to bring about major changes in the electronic structure and properties. In order to explore this important aspect, we have carried out first‐principles DFT calculations to determine the effects of substitution of P and Cl on the properties of CdS and ZnS in hexagonal and cubic structures and show that a sub‐band of the trivalent phosphorus with strong bonding with the cation appears in the gap just above the valence band, causing a reduction in the gap and enhancement of dielectric properties. Experimentally, it has been possible to substitute P and Cl in hexagonal CdS and ZnS. The doping reduces the band gap significantly as predicted by theory. A similar decrease in the band gap is observed in N and F co‐substituted in cubic ZnS. Such anionic substitution helps to improve hydrogen evolution from CdS semiconductor structures and may give rise to other applications as well. Anionisches Dotieren: Der Ersatz der Schwefelkomponente in CdS und ZnS durch P und Cl oder N und F verursacht bemerkenswerte Veränderungen in der elektronischen Struktur dieser Materialien, da die elektronischen Bandlücken deutlich abgesenkt werden (Eg=Bandlückenenergie). Der Effekt wurde mit DFT‐Rechnungen untersucht, und die Veränderungen konnten mit hochaufgelöster Röntgenphotoelektronenspektroskopie beobachtet werden.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201501532