Loading…
Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction
The metal nanoparticles (NPs) have been prepared using a water-in-oil microemulsion system of water/dioctyl sulfosuccinate sodium salt (aerosol-OT, AOT)/isooctane at 25 °C. Since the NPs produced in this system can endure forcing conditions (100 °C), this system has been used for the synthesis of na...
Saved in:
Published in: | Tetrahedron 2012-04, Vol.68 (14), p.3001-3011 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The metal nanoparticles (NPs) have been prepared using a water-in-oil microemulsion system of water/dioctyl sulfosuccinate sodium salt (aerosol-OT, AOT)/isooctane at 25 °C. Since the NPs produced in this system can endure forcing conditions (100 °C), this system has been used for the synthesis of nano-catalysts in the Heck reactions. FE-SEM, DLS, and UV/vis analyses have been used to characterize the surface morphology, size, and proof of the formation of all the prepared metal NPs, respectively. In addition, the effects of some reaction parameters (here, bases and solvents) were optimized. Differences in the catalytic properties of the synthesized NPs have also been investigated. Consequently, the Pd/Cu (4:1) bimetallic NP showed the highest activity in the C–C coupling reaction of the iodobenzene with the styrene, thus it is employed as the superior catalyst in this study. Therefore, the Pd/Cu (4:1) bimetallic NPs were further investigated using TEM and XRD analyses. This catalyst system is also reusable for six runs with very negligible reduction in the efficiency.
[Display omitted] Digital photograph of microemulsions before reduction. (a) Pd; (b) Ag; (c) Pd/Ag (1:1); (d) Pd/Ni (1:1); (e) Pd/Cu (4:1). |
---|---|
ISSN: | 0040-4020 1464-5416 |
DOI: | 10.1016/j.tet.2012.02.028 |