Loading…

Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction

The metal nanoparticles (NPs) have been prepared using a water-in-oil microemulsion system of water/dioctyl sulfosuccinate sodium salt (aerosol-OT, AOT)/isooctane at 25 °C. Since the NPs produced in this system can endure forcing conditions (100 °C), this system has been used for the synthesis of na...

Full description

Saved in:
Bibliographic Details
Published in:Tetrahedron 2012-04, Vol.68 (14), p.3001-3011
Main Authors: Heshmatpour, Felora, Abazari, Reza, Balalaie, Saeed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The metal nanoparticles (NPs) have been prepared using a water-in-oil microemulsion system of water/dioctyl sulfosuccinate sodium salt (aerosol-OT, AOT)/isooctane at 25 °C. Since the NPs produced in this system can endure forcing conditions (100 °C), this system has been used for the synthesis of nano-catalysts in the Heck reactions. FE-SEM, DLS, and UV/vis analyses have been used to characterize the surface morphology, size, and proof of the formation of all the prepared metal NPs, respectively. In addition, the effects of some reaction parameters (here, bases and solvents) were optimized. Differences in the catalytic properties of the synthesized NPs have also been investigated. Consequently, the Pd/Cu (4:1) bimetallic NP showed the highest activity in the C–C coupling reaction of the iodobenzene with the styrene, thus it is employed as the superior catalyst in this study. Therefore, the Pd/Cu (4:1) bimetallic NPs were further investigated using TEM and XRD analyses. This catalyst system is also reusable for six runs with very negligible reduction in the efficiency. [Display omitted] Digital photograph of microemulsions before reduction. (a) Pd; (b) Ag; (c) Pd/Ag (1:1); (d) Pd/Ni (1:1); (e) Pd/Cu (4:1).
ISSN:0040-4020
1464-5416
DOI:10.1016/j.tet.2012.02.028