Loading…

"Aggregation induced phosphorescence" active "rollover" iridium(III) complex as a multi-stimuli-responsive luminescence material

On reaction of 2,2'-bipyridine with iridium(iii), an "aggregation induced phosphorescence (AIP)" active "rollover" complex, [Ir(PPh3)2(bipy-H)(Cl)(H)] (bipy-H = κ(2)-N,C-2,2'-bipyridine) or [Ir(bipy-H)], is obtained. The emission colour changes from bluish-green to yell...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2015-04, Vol.44 (14), p.6581-6592
Main Authors: Alam, Parvej, Kaur, Gurpreet, Chakraborty, Shamik, Roy Choudhury, Angshuman, Laskar, Inamur Rahaman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:On reaction of 2,2'-bipyridine with iridium(iii), an "aggregation induced phosphorescence (AIP)" active "rollover" complex, [Ir(PPh3)2(bipy-H)(Cl)(H)] (bipy-H = κ(2)-N,C-2,2'-bipyridine) or [Ir(bipy-H)], is obtained. The emission colour changes from bluish-green to yellowish-orange and vice versa after repeated protonation and deprotonation of [Ir(bipy-H)], respectively, which unequivocally supports its reversible nature. [Ir(bipy-H)] is sensitive to acids with different pKa values. Tuning of the emission properties can be achieved in the presence of acids with different pKas. This behaviour allows the complex, [Ir(bipy-H)], to function as a phosphorescent acid sensor in both solution and the solid state, as well as a chemosensor for detecting acidic and basic organic vapours. The protonated form, [Ir(bipy-H)H(+)], which is generated after protonation of [Ir(bipy-H)] can be used as a solvatochromic probe for oxygen containing solvents, and also shows vapochromic properties. The emission, absorption and (1)H NMR spectra of [Ir(bipy-H)] under acidic and basic conditions demonstrate its reversible nature. DFT based calculations suggest that changes in the electron affinity of the pyridinyl rings are responsible for all these processes.
ISSN:1477-9226
1477-9234
DOI:10.1039/c4dt03424d