Loading…
Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening
Genetic sensors capable of converting key metabolite levels to fluorescence signals enable the monitoring of intracellular compound concentrations in living cells, and emerge as an efficient tool in high-throughput genetic screening. However, the development of genetic sensors in yeasts lags far beh...
Saved in:
Published in: | ACS synthetic biology 2015-12, Vol.4 (12), p.1308-1315 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Genetic sensors capable of converting key metabolite levels to fluorescence signals enable the monitoring of intracellular compound concentrations in living cells, and emerge as an efficient tool in high-throughput genetic screening. However, the development of genetic sensors in yeasts lags far behind their development in bacteria. Here we report the design of a malonyl-CoA sensor in Saccharomyces cerevisiae using an adapted bacterial transcription factor FapR and its corresponding operator fapO to gauge intracellular malonyl-CoA levels. By combining this sensor with a genome-wide overexpression library, we identified two novel gene targets that improved intracellular malonyl-CoA concentration. We further utilized the resulting recombinant yeast strain to produce a valuable compound, 3-hydroxypropionic acid, from malonyl-CoA and enhanced its titer by 120%. Such a genetic sensor provides a powerful approach for genome-wide screening and could further improve the synthesis of a large range of chemicals derived from malonyl-CoA in yeast. |
---|---|
ISSN: | 2161-5063 2161-5063 |
DOI: | 10.1021/acssynbio.5b00069 |