Loading…
Effects of Secondary Metal Carbonate Addition on the Porous Character of Resorcinol–Formaldehyde Xerogels
A deeper understanding of the chemistry and physics of growth, aggregation, and gelation processes involved in the formation of xerogels is key to providing greater control of the porous characteristics of such materials, increasing the range of applications for which they may be utilized. Time-reso...
Saved in:
Published in: | Langmuir 2015-12, Vol.31 (50), p.13571-13580 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A deeper understanding of the chemistry and physics of growth, aggregation, and gelation processes involved in the formation of xerogels is key to providing greater control of the porous characteristics of such materials, increasing the range of applications for which they may be utilized. Time-resolved dynamic light scattering has been used to study the formation of resorcinol–formaldehyde gels in the presence of combinations of Group I (Na and Cs) and Group II (Ca and Ba) metal carbonates. It was found that the combined catalyst composition, including species and times of addition, is crucial in determining the end properties of the xerogels via its effect on growth of clusters involved in formation of the gel network. Combination materials have textural characteristics within the full gamut offered by each catalyst alone; however, in addition, combination materials that retain the small pores associated with sodium carbonate catalyzed xerogels exhibit a narrowing of the pore size distribution, providing an increased pore volume within an application-specific range of pore sizes. We also show evidence of pore size tunability while maintaining ionic strength, which significantly increases the potential of such systems for biological applications. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b02483 |