Loading…
Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells
Abstract Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Act...
Saved in:
Published in: | Immunobiology (1979) 2016-02, Vol.221 (2), p.310-322 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Activation of immune cells and increased serum SP-D is observed in a range of patho-physiological conditions including infections. We speculated if SP-D can modulate systemic immune response via direct interaction with activated PBMCs. In this study, we examined interaction of a recombinant fragment of human SP-D (rhSP-D) on PHA-activated PBMCs. We report a significant downregulation of activation receptors such as TLR2, TLR4, CD11c and CD69 upon rhSP-D treatment. rhSP-D inhibited production of Th1 (TNF-α and IFN-γ) and Th17 (IL-17A) cytokines along with IL-6. Interestingly, levels of IL-2, Th2 (IL-4) and regulatory (IL-10 and TGF-β) cytokines remained unaltered. Analysis of co-stimulatory CD28 and co-inhibitory CTLA4 receptors along with their ligands CD80 and CD86 revealed a selective up-regulation of CTLA4 in the lymphocyte subset. rhSP-D induced apoptosis in the activated but not in non-activated lymphocytes. Blockade of CTLA4 inhibited rhSP-D mediated apoptosis of activated lymphocytes, confirming involvement of CTLA4. We conclude that SP-D restores immune homeostasis. It regulates expression of immunomodulatory receptors and cytokines, which is followed by induction of apoptosis in activated lymphocytes. These findings suggest a critical role of SP-D in immune surveillance against activated immune cells. |
---|---|
ISSN: | 0171-2985 1878-3279 |
DOI: | 10.1016/j.imbio.2015.10.004 |