Loading…
Mechanism of Polymer Collapse in Miscible Good Solvents
We propose a physical mechanism for co-nonsolvency of a stimulus-responsive polymer in water/methanol mixed solution based on results obtained with molecular simulations. Even though the phenomenon is well known, the mechanism behind co-nonsolvency is still under debate. Herein, we study co-nonsolve...
Saved in:
Published in: | The journal of physical chemistry. B 2015-12, Vol.119 (51), p.15780-15788 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a physical mechanism for co-nonsolvency of a stimulus-responsive polymer in water/methanol mixed solution based on results obtained with molecular simulations. Even though the phenomenon is well known, the mechanism behind co-nonsolvency is still under debate. Herein, we study co-nonsolvency of poly(N-isopropylacrylamide) (PNiPAM) in methanol aqueous solutions, the most widely studied and experimentally well-characterized system. Our results show that at low alcohol content of the solution methanol preferentially binds to the PNiPAM globule and drives polymer collapse. The energetics of electrostatic, hydrogen bonding, or bridging-type interactions with the globule is found to play no role. Instead, preferential methanol binding results in a significant increase in the globule’s configurational entropy, stabilizing methanol-enriched globular structures over wet globular structures in neat water. This mechanism drives the reduction of the lower critical solution temperature with increasing methanol content in the co-nonsolvency regime and eventually leads to polymer collapse. The globule-to-coil re-entrance at high methanol concentrations is instead driven by changes in solvent-excluded volume of the coil and globular states imparted by a decrease in solvent density with increasing methanol content of the solution: with increasing proportion of larger solvent particles (methanol), the entropic (cavity formation) cost of redistributing solvent molecules upon polymer re-entrance becomes smaller. This effect provides a natural explanation for the experimentally observed dependence of the re-entrance transition on chain molecular weight. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.5b10684 |