Loading…

Photochemistry of UV-Excited Trifluoroacetylacetone and Hexafluoroacetylacetone I: Infrared Spectra of Fluorinated Methylfuranones Formed by HF Photoelimination

The photochemistry of gas-phase 1,1,1-trifluoroacetylacetone (TFAA) excited with ultraviolet (UV) light involves a significant photoelimination channel that produces hydrogen fluoride and a fluorinated methylfuranone, 2,2-difluoro-5-methyl-3(2H)-furanone (2FMF). This pathway is remarkable because it...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-12, Vol.116 (50), p.12305-12313
Main Authors: Muyskens, Karen J, Alsum, Joel R, Thielke, Timothy A, Boer, Jodi L, Heetderks, Tina R, Muyskens, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photochemistry of gas-phase 1,1,1-trifluoroacetylacetone (TFAA) excited with ultraviolet (UV) light involves a significant photoelimination channel that produces hydrogen fluoride and a fluorinated methylfuranone, 2,2-difluoro-5-methyl-3(2H)-furanone (2FMF). This pathway is remarkable because it is a gas-phase unimolecular reaction that forms a five-membered ring product. This report is the first of such a TFAA photoelimination channel, which is similar to one observed with 1,1,1,5,5,5-hexafluoroacetylacetone (HFAA), resulting in 2,2-difluoro-5-trifluoromethyl-3(2H)-furanone. We present infrared spectral observations of 2FMF produced by pulsed, UV-laser excitation of TFAA, along with analogous results from HFAA, supported by density functional theory (DFT) computational studies. DFT results for the infrared spectrum of 5-methyl-3(2H)-furanone, the expected comparable acetylacetone photoelimination product, help suggest that UV excitation of acetylacetone fails to follow a similar type of photoelimination. We use a weighted RMS approach as a figure of merit for comparing calculated infrared frequencies with experimental data. Results from the three acetylacetones reveal how the presence of fluorine atoms in acetylacetone influences the gas-phase molecular photochemistry.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp307725z