Loading…

Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries

For the first time, we report the electrochemical activity of anatase TiO2 nanorods in a Na cell. The anatase TiO2 nanorods were synthesized by a hydrothermal method, and their surfaces were coated by carbon to improve the electric conductivity through carbonization of pitch at 700 °C for 2 h in Ar...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2014-02, Vol.14 (2), p.416-422
Main Authors: Kim, Ki-Tae, Ali, Ghulam, Chung, Kyung Yoon, Yoon, Chong Seung, Yashiro, Hitoshi, Sun, Yang-Kook, Lu, Jun, Amine, Khalil, Myung, Seung-Taek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the first time, we report the electrochemical activity of anatase TiO2 nanorods in a Na cell. The anatase TiO2 nanorods were synthesized by a hydrothermal method, and their surfaces were coated by carbon to improve the electric conductivity through carbonization of pitch at 700 °C for 2 h in Ar flow. The resulting structure does not change before and after the carbon coating, as confirmed by X-ray diffraction (XRD). Transmission electron microscopic images confirm the presence of a carbon coating on the anatase TiO2 nanorods. In cell tests, anodes of bare and carbon-coated anatase TiO2 nanorods exhibit stable cycling performance and attain a capacity of about 172 and 193 mAh g–1 on the first charge, respectively, in the voltage range of 3–0 V. With the help of the conductive carbon layers, the carbon-coated anatase TiO2 delivers more capacity at high rates, 104 mAh g–1 at the 10 C-rate (3.3 A g–1), 82 mAh g–1 at the 30 C-rate (10 A g–1), and 53 mAh g–1 at the 100 C-rate (33 A g–1). By contrast, the anode of bare anatase TiO2 nanorods delivers only about 38 mAh g–1 at the 10 C-rate (3.3 A g–1). The excellent cyclability and high-rate capability are the result of a Na+ insertion and extraction reaction into the host structure coupled with Ti4+/3+ redox reaction, as revealed by X-ray absorption spectroscopy.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl402747x