Loading…
Electrical resistivity cross-section across the Garhwal Himalaya: Proxy to fluid-seismicity linkage
Magnetotelluric (MT) measurements along a profile cutting across the Garhwal Himalaya of India are inverted to obtain 2-D electrical resistivity structures of the Himalayan wedge and of the underthrusting Indian plate. The imaged resistivity cross-section is dominated by a low-angle north-east dippi...
Saved in:
Published in: | Tectonophysics 2014-12, Vol.637, p.68-79 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetotelluric (MT) measurements along a profile cutting across the Garhwal Himalaya of India are inverted to obtain 2-D electrical resistivity structures of the Himalayan wedge and of the underthrusting Indian plate. The imaged resistivity cross-section is dominated by a low-angle north-east dipping intra-crustal high conducting layer (IC-HCL) with an average thickness of 5km. At transition from the Lesser Himalaya to the Higher Himalaya, the IC-HCL is marked by a ramp structure across which its top jumps from a depth of 8km to 13km. High conductivity of the layer is caused by pounding of upward propagating metamorphic fluids trapped by tectonically induced neutral buoyancy. In compression regime of the Himalaya, the mechanical weakening effects of the fluids counteract the fault-normal stresses, thereby facilitating thrust-type earthquakes on a plane imaged as the top of the IC-HCL. It is suggested that in the Himalaya collision belt, like the active subduction zone, the active seismic plane forming seat of large and great earthquakes is located a few kilometers above the top of the down-going plate. In this tectonic setting, the high conductance ramp symbolizes a block of low shear strength and high strain, which under the deviatoric stresses release accentuated stresses into the brittle crust, thereby generating small but more frequent earthquakes in the narrow Himalayan Seismic Belt. In response to either the co-seismic pumping or the stress transfer during inter-seismic period, the upward infiltration of fluid fluxes into the over pressurized zones sufficiently reduces the shear strength of local thrusts and shear zones, turning these into locales of concentrated seismicity.
•Interrelation between electrical resistivity, fluid and seismicity in collision zone•Tracking fluid-seismicity linkage through electrical resistivity distribution•Electrical resistivity images proxy to role of fluids in seismogenesis |
---|---|
ISSN: | 0040-1951 1879-3266 |
DOI: | 10.1016/j.tecto.2014.09.015 |