Loading…

Smart Nanodevice Combined Tumor-Specific Vector with Cellular Microenvironment-Triggered Property for Highly Effective Antiglioma Therapy

Malignant glioma, a highly aggressive tumor, is one of the deadliest types of cancer associated with dismal outcome despite optimal chemotherapeutic regimens. One explanation for this is the failure of most chemotherapeutics to accumulate in the tumors, additionally causing serious side effects in p...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2014-02, Vol.8 (2), p.1191-1203
Main Authors: Shao, Kun, Ding, Ning, Huang, Shixian, Ren, Sumei, Zhang, Yu, Kuang, Yuyang, Guo, Yubo, Ma, Haojun, An, Sai, Li, Yingxia, Jiang, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Malignant glioma, a highly aggressive tumor, is one of the deadliest types of cancer associated with dismal outcome despite optimal chemotherapeutic regimens. One explanation for this is the failure of most chemotherapeutics to accumulate in the tumors, additionally causing serious side effects in periphery. To solve these problems, we sought to develop a smart therapeutic nanodevice with cooperative dual characteristics of high tumor-targeting ability and selectively controlling drug deposition in tumor cells. This nanodevice was fabricated with a cross-linker, containing disulfide linkage to form an inner cellular microenvironment-responsive “-S-S-” barrier, which could shield the entrapped drug leaking in blood circulation. In addition, dehydro­ascorbic acid (DHA), a novel small molecular tumor-specific vector, was decorated on the nanodevice for tumor-specific recognition via GLUT1, a glucose transporter highly expressed on tumor cells. The drug-loaded nanodevice was supposed to maintain high integrity in the bloodstream and increasingly to specifically bind with tumor cells through the association of DHA with GLUT1. Once within the tumor cells, the drug release was triggered by a high level of intracellular glutathione. When these two features were combined, the smart nanodevice could markedly improve the drug tumor-targeting delivery efficiency, meanwhile decreasing systemic toxicity. Herein, this smart nanodevice showed promising potential as a powerful platform for highly effective antiglioma treatment.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn406285x