Loading…
Spectral statistics of Bernoulli matrix ensembles-a random walk approach (I)
We investigate the eigenvalue statistics of random Bernoulli matrices, where the matrix elements are chosen independently from a binary set with equal probability. This is achieved by initiating a discrete random walk process over the space of matrices and analysing the induced random motion of the...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2015-06, Vol.48 (25), p.255101-30 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the eigenvalue statistics of random Bernoulli matrices, where the matrix elements are chosen independently from a binary set with equal probability. This is achieved by initiating a discrete random walk process over the space of matrices and analysing the induced random motion of the eigenvalues-an approach which is similar to Dyson's Brownian motion model but with important modifications. In particular, we show our process is described by a Fokker-Planck equation, up to an error margin which vanishes in the limit of large matrix dimension. The stationary solution of which corresponds to the joint probability density function of certain well-known fixed trace Gaussian ensembles. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/48/25/255101 |