Loading…

Smooth hyperbolicity cones are spectrahedral shadows

Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by sho...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 2015-10, Vol.153 (1), p.213-221
Main Authors: Netzer, Tim, Sanyal, Raman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the linear projection of a spectrahedral cone, that is, a spectrahedral shadow.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-014-0744-6