Loading…
Correcting ionospheric effects and monitoring two-dimensional displacement fields with multiple-aperture InSAR technology with application to the Yushu earthquake
Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In this paper, we introduce a novel approach to measuring two-dimensional (2-D) surface...
Saved in:
Published in: | Science China. Earth sciences 2012-12, Vol.55 (12), p.1961-1971 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In this paper, we introduce a novel approach to measuring two-dimensional (2-D) surface displacements by exploiting a single InSAR pair, which is called multi-aperture InSAR (MAI) technology.We study the effects of baseline errors and the ionosphere on MAI technology and develop a directional filter and interpolator to minimize the ionospheric effects.A PALSAR image pair covering the 2010 Yushu earthquake is used to estimate the 2-D displacement fields of the earthquake using the MAI approach.The experimental results show that MAI is superior to conventional Offset-Tracking and therefore has great potential in co-seismic displacement measurement and source parameter inversion. |
---|---|
ISSN: | 1674-7313 1869-1897 |
DOI: | 10.1007/s11430-012-4509-x |